MySQL索引原理

1、初识索引

1.1 为何要有索引?

通常的应用系统,读写比例在10:1左右,并且插入操做和通常的更新操做不多出现性能问题,在生产环境中,咱们遇到最多的,也是最容易出问题的,仍是一些复杂的查询操做,所以对查询语句的优化显然是重中之重。提及加速查询,就不得不提到索引了。python

1.2 什么是索引?

索引在MySQL中也叫是一种“键”,是存储引擎用于快速找到记录的一种数据结构。索引对于良好的性能很是关键,尤为是当表中的数据量愈来愈大时,索引对于性能的影响愈发重要。mysql

索引优化应该是对查询性能优化最有效的手段了。索引可以轻易将查询性能提升好几个数量级。ios

索引至关于字典的音序表,若是要查某个字,若是不使用音序表,则须要从几百页中逐页去查。算法

1.3 你是否对索引存在误解?

索引是应用程序设计和开发的一个重要方面。若索引太多,应用程序的性能可能会受到影响。而索引太少,对查询性能又会产生影响,要找到一个平衡点,这对应用程序的性能相当重要。一些开发人员老是在过后才想起添加索引----我一直认为,这源于一种错误的开发模式。若是知道数据的使用,从一开始就应该在须要处添加索引。开发人员每每对数据库的使用停留在应用的层面,好比编写SQL语句、存储过程之类,他们甚至可能不知道索引的存在,或认为过后让相关DBA加上便可。DBA每每不够了解业务的数据流,而添加索引须要经过监控大量的SQL语句进而从中找到问题,这个步骤所需的时间确定是远大于初始添加索引所需的时间,而且可能会遗漏一部分的索引。固然索引也并非越多越好,我曾经遇到过这样一个问题:某台MySQL服务器iostat显示磁盘使用率一直处于100%,通过分析后发现是因为开发人员添加了太多的索引,在删除一些没必要要的索引以后,磁盘使用率立刻降低为20%。可见索引的添加也是很是有技术含量的。sql

2、索引的原理

2.1 索引原理

索引的目的在于提升查询效率,与咱们查阅图书所用的目录是一个道理:先定位到章,而后定位到该章下的一个小节,而后找到页数。类似的例子还有:查字典,查火车车次,飞机航班等数据库

本质都是:经过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,咱们能够老是用同一种查找方式来锁定数据。vim

数据库也是同样,但显然要复杂的多,由于不只面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对全部的问题呢?咱们回想字典的例子,能不能把数据分红段,而后分段查询呢?最简单的若是1000条数据,1到100分红第一段,101到200分红第二段,201到300分红第三段......这样查第250条数据,只要找第三段就能够了,一会儿去除了90%的无效数据。但若是是1千万的记录呢,分红几段比较好?稍有算法基础的同窗会想到搜索树,其平均复杂度是lgN,具备不错的查询性能。但这里咱们忽略了一个关键的问题,复杂度模型是基于每次相同的操做成原本考虑的。而数据库实现比较复杂,一方面数据是保存在磁盘上的,另一方面为了提升性能,每次又能够把部分数据读入内存来计算,由于咱们知道访问磁盘的成本大概是访问内存的十万倍左右,因此简单的搜索树难以知足复杂的应用场景。性能优化

2.2 磁盘IO与预读

前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间能够分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所须要的时间,主流磁盘通常在5ms如下;旋转延迟就是咱们常常据说的磁盘转速,好比一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,通常在零点几毫秒,相对于前两个时间能够忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS(Million Instructions Per Second)的机器每秒能够执行5亿条指令,由于指令依靠的是电的性质,换句话说执行一次IO的时间能够执行约450万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。下图是计算机硬件延迟的对比图,供你们参考:服务器

204-MySQL索引原理-01.png?x-oss-process=style/watermark

考虑到磁盘IO是很是高昂的操做,计算机操做系统作了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,由于局部预读性原理告诉咱们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据咱们称之为一页(page)。具体一页有多大数据跟操做系统有关,通常为4k或8k,也就是咱们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计很是有帮助。

3、索引的数据结构

MySQL索引的数据结构-B+树介绍:http://www.javashuo.com/article/p-rzligenp-cy.html

4、MySQL索引管理

4.1 功能

  1. 索引的功能就是加速查找
  2. mysql中的primary key,unique,联合惟一也都是索引,这些索引除了加速查找之外,还有约束的功能

4.2 MySQL经常使用的索引

  • 普通索引INDEX:加速查找

  • 惟一索引:
    • 主键索引PRIMARY KEY:加速查找+约束(不为空、不能重复)
    • 惟一索引UNIQUE:加速查找+约束(不能重复)
  • 联合索引:
    • PRIMARY KEY(id,name):联合主键索引
    • UNIQUE(id,name):联合惟一索引
    • INDEX(id,name):联合普通索引

4.3 各个索引应用场景

举个例子来讲,好比你在为某商场作一个会员卡的系统。

这个系统有一个会员表
有下列字段:
会员编号 INT
会员姓名 VARCHAR(10)
会员身份证号码 VARCHAR(18)
会员电话 VARCHAR(10)
会员住址 VARCHAR(50)
会员备注信息 TEXT

那么这个 会员编号,做为主键,使用 PRIMARY
会员姓名 若是要建索引的话,那么就是普通的 INDEX
会员身份证号码 若是要建索引的话,那么能够选择 UNIQUE (惟一的,不容许重复)

# 除此以外还有全文索引,即FULLTEXT
会员备注信息 , 若是须要建索引的话,能够选择全文搜索。
用于搜索很长一篇文章的时候,效果最好。
用在比较短的文本,若是就一两行字的,普通的 INDEX 也能够。
但其实对于全文搜索,咱们并不会使用MySQL自带的该索引,而是会选择第三方软件如Sphinx,专门来作全文搜索。

# 其余的如空间索引SPATIAL,了解便可,几乎不用

各个索引的应用场景

各个索引的应用场景

4.4 索引的两大类型hash与btree

咱们能够在建立上述索引的时候,为其指定索引类型,分两类:

  1. hash类型的索引:查询单条快,范围查询慢
  2. btree类型的索引:b+树,层数越多,数据量指数级增加(咱们就用它,由于innodb默认支持它)

不一样的存储引擎支持的索引类型也不同:

  • InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
  • MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
  • Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
  • NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
  • Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;

4.5 建立/删除索引的语法

# 方法一:建立表时
      CREATE TABLE 表名 (
                字段名1  数据类型 [完整性约束条件…],
                字段名2  数据类型 [完整性约束条件…],
                [UNIQUE | FULLTEXT | SPATIAL ]   INDEX | KEY
                [索引名]  (字段名[(长度)]  [ASC |DESC]) 
                );


# 方法二:CREATE在已存在的表上建立索引
        CREATE  [UNIQUE | FULLTEXT | SPATIAL ]  INDEX  索引名 
                     ON 表名 (字段名[(长度)]  [ASC |DESC]) ;


# 方法三:ALTER TABLE在已存在的表上建立索引
        ALTER TABLE 表名 ADD  [UNIQUE | FULLTEXT | SPATIAL ] INDEX
                             索引名 (字段名[(长度)]  [ASC |DESC]) ;
                             
# 删除索引:DROP INDEX 索引名 ON 表名字;

4.6 示例

# 方式一
create table t1(
    id int,
    name char,
    age int,
    sex enum('male','female'),
    unique key uni_id(id),
    index ix_name(name) # index没有key
);
create table t1(
    id int,
    name char,
    age int,
    sex enum('male','female'),
    unique key uni_id(id),
    index(name) # index没有key
);


# 方式二
create index ix_age on t1(age);


# 方式三
alter table t1 add index ix_sex(sex);
alter table t1 add index(sex);

# 查看
mysql> show create table t1;
| t1    | CREATE TABLE `t1` (
  `id` int(11) DEFAULT NULL,
  `name` char(1) DEFAULT NULL,
  `age` int(11) DEFAULT NULL,
  `sex` enum('male','female') DEFAULT NULL,
  UNIQUE KEY `uni_id` (`id`),
  KEY `ix_name` (`name`),
  KEY `ix_age` (`age`),
  KEY `ix_sex` (`sex`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1

5、测试索引

5.1 数据准备

# 1. 准备表
create table s1(
id int,
name varchar(20),
gender char(6),
email varchar(50)
);

# 2. 建立存储过程,实现批量插入记录
delimiter $$ # 声明存储过程的结束符号为$$
create procedure auto_insert1()
BEGIN
    declare i int default 1;
    while(i<3000000)do
        insert into s1 values(i,'eva','female',concat('eva',i,'@oldboy'));
        set i=i+1;
    end while;
END$$ # $$结束
delimiter ; # 从新声明分号为结束符号

# 3. 查看存储过程
show create procedure auto_insert1\G 

# 4. 调用存储过程
call auto_insert1();

一、在没有索引的前提下测试查询速度

无索引:mysql根本就不知道究竟是否存在id等于333333333的记录,只能把数据表从头至尾扫描一遍,此时有多少个磁盘块就须要进行多少IO操做,因此查询速度很慢

mysql> select * from s1 where id=333333333;
Empty set (0.33 sec)

二、在表中已经存在大量数据的前提下,为某个字段段创建索引,创建速度会很慢

204-MySQL索引原理-02.png?x-oss-process=style/watermark

三、在索引创建完毕后,以该字段为查询条件时,查询速度提高明显

204-MySQL索引原理-03.png?x-oss-process=style/watermark

注意:

  1. mysql先去索引表里根据b+树的搜索原理很快搜索到id等于333333333的记录不存在,IO大大下降,于是速度明显提高
  2. 咱们能够去mysql的data目录下找到该表,能够看到占用的硬盘空间多了
  3. 须要注意,以下图

204-MySQL索引原理-04.png?x-oss-process=style/watermark

5.2 小结

  1. 必定是为搜索条件的字段建立索引,好比select * from s1 where id = 333;就须要为id加上索引
  2. 在表中已经有大量数据的状况下,建索引会很慢,且占用硬盘空间,建完后查询速度加快,好比create index idx on s1(id);会扫描表中全部的数据,而后以id为数据项,建立索引结构,存放于硬盘的表中。建完之后,再查询就会很快了。
  3. 须要注意的是:innodb表的索引会存放于s1.ibd文件中,而myisam表的索引则会有单独的索引文件table1.MYI

MySAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而在innodb中,表数据文件自己就是按照B+Tree(BTree即Balance True)组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,所以innodb表数据文件自己就是主索引。
由于inndob的数据文件要按照主键汇集,因此innodb要求表必需要有主键(Myisam能够没有),若是没有显式定义,则mysql系统会自动选择一个能够惟一标识数据记录的列做为主键,若是不存在这种列,则mysql会自动为innodb表生成一个隐含字段做为主键,这字段的长度为6个字节,类型为长整型.

6、正确使用索引

6.1 索引未命中

并非说咱们建立了索引就必定会加快查询速度,若想利用索引达到预想的提升查询速度的效果,咱们在添加索引时,必须遵循如下问题:

一、范围问题,或者说条件不明确,条件中出现这些符号或关键字:>、>=、<、<=、!= 、between...and...、like、大于号、小于号

204-MySQL索引原理-05.png?x-oss-process=style/watermark

不等于!=

204-MySQL索引原理-06.png?x-oss-process=style/watermark

between ...and...

204-MySQL索引原理-07.png?x-oss-process=style/watermark

like

204-MySQL索引原理-08.png?x-oss-process=style/watermark

二、尽可能选择区分度高的列做为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大咱们扫描的记录数越少,惟一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不一样,这个值也很难肯定,通常须要join的字段咱们都要求是0.1以上,即平均1条扫描10条记录。

先把表中的索引都删除,让咱们专心研究区分度的问题:

mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field  | Type        | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id     | int(11)     | YES  | MUL | NULL    |       |
| name   | varchar(20) | YES  |     | NULL    |       |
| gender | char(5)     | YES  |     | NULL    |       |
| email  | varchar(50) | YES  | MUL | NULL    |       |
+--------+-------------+------+-----+---------+-------+
rows in set (0.00 sec)

mysql> drop index a on s1;
Query OK, 0 rows affected (0.20 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> drop index d on s1;
Query OK, 0 rows affected (0.18 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field  | Type        | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id     | int(11)     | YES  |     | NULL    |       |
| name   | varchar(20) | YES  |     | NULL    |       |
| gender | char(5)     | YES  |     | NULL    |       |
| email  | varchar(50) | YES  |     | NULL    |       |
+--------+-------------+------+-----+---------+-------+
rows in set (0.00 sec)

204-MySQL索引原理-09.png?x-oss-process=style/watermark

分析缘由:

咱们编写存储过程为表s1批量添加记录,name字段的值均为egon,也就是说name这个字段的区分度很低(gender字段也是同样的,咱们稍后再搭理它)

回忆b+树的结构,查询的速度与树的高度成反比,要想将树的高低控制的很低,须要保证:在某一层内数据项均是按照从左到右,从小到大的顺序依次排开,即左1<左2<左3<...

而对于区分度低的字段,没法找到大小关系,由于值都是相等的,毫无疑问,还想要用b+树存放这些等值的数据,只能增长树的高度,字段的区分度越低,则树的高度越高。极端的状况,索引字段的值都同样,那么b+树几乎成了一根棍。本例中就是这种极端的状况,name字段全部的值均为'nick'

如今咱们得出一个结论:为区分度低的字段创建索引,索引树的高度会很高,然而这具体会带来什么影响呢???

  1. 若是条件是name='xxxx',那么确定是能够第一时间判断出'xxxx'是不在索引树中的(由于树中全部的值均为'nick’),因此查询速度很快

  2. 若是条件正好是name='nick',查询时,咱们永远没法从树的某个位置获得一个明确的范围,只能往下找,往下找,往下找。。。这与全表扫描的IO次数没有多大区别,因此速度很慢

三、索引列不能在条件中参与计算,保持列“干净”,好比from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,缘由很简单,b+树中存的都是数据表中的字段值,但进行检索时,须要把全部元素都应用函数才能比较,显然成本太大。因此语句应该写成create_time = unix_timestamp(’2014-05-29’)

204-MySQL索引原理-10.png?x-oss-process=style/watermark

四、and/or

  1. and与or的逻辑
    • 条件1 and 条件2:全部条件都成立才算成立,但凡要有一个条件不成立则最终结果不成立
    • 条件1 or 条件2:只要有一个条件成立则最终结果就成立
  2. and的工做原理
    • 条件:a = 10 and b = 'xxx' and c > 3 and d =4
    • 索引:制做联合索引(d,a,b,c)
    • 工做原理:对于连续多个and:mysql会按照联合索引,从左到右的顺序找一个区分度高的索引字段(这样即可以快速锁定很小的范围),加速查询,即按照d—>a->b->c的顺序
  3. or的工做原理
    • 条件:a = 10 or b = 'xxx' or c > 3 or d =4
    • 索引:制做联合索引(d,a,b,c)
    • 工做原理:对于连续多个or:mysql会按照条件的顺序,从左到右依次判断,即a->b->c->d

204-MySQL索引原理-11.png?x-oss-process=style/watermark

在左边条件成立可是索引字段的区分度低的状况下(name与gender均属于这种状况),会依次往右找到一个区分度高的索引字段,加速查询。

204-MySQL索引原理-12.png?x-oss-process=style/watermark

204-MySQL索引原理-13.png?x-oss-process=style/watermark

通过分析,在条件为name='nick' and gender='male' and id>333 and email='xxx'的状况下,咱们彻底不必为前三个条件的字段加索引,由于只能用上email字段的索引,前三个字段的索引反而会下降咱们的查询效率

204-MySQL索引原理-14.png?x-oss-process=style/watermark

五、最左前缀匹配原则,很是重要的原则,对于组合索引mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就中止匹配(指的是范围大了,有索引速度也慢),好比a = 1 and b = 2 and c > 3 and d = 4 若是创建(a,b,c,d)顺序的索引,d是用不到索引的,若是创建(a,b,d,c)的索引则均可以用到,a,b,d的顺序能够任意调整。

204-MySQL索引原理-15.png?x-oss-process=style/watermark

六、其余状况

- 使用函数
    select * from tb1 where reverse(email) = 'nick';
            
- 类型不一致
    若是列是字符串类型,传入条件是必须用引号引发来,否则...
    select * from tb1 where email = 999;
    
#排序条件为索引,则select字段必须也是索引字段,不然没法命中
- order by
    select name from s1 order by email desc;
    当根据索引排序时候,select查询的字段若是不是索引,则速度仍然很慢
    select email from s1 order by email desc;
    特别的:若是对主键排序,则仍是速度很快:
        select * from tb1 order by nid desc;
 
- 组合索引最左前缀
    若是组合索引为:(name,email)
    name and email       -- 命中索引
    name                 -- 命中索引
    email                -- 未命中索引


- count(1)或count(列)代替count(*)在mysql中没有差异了

- create index xxxx  on tb(title(19)) #text类型,必须制定长度

6.2 其余注意事项

  • 避免使用select *
  • 使用count(*)
  • 建立表时尽可能使用 char 代替 varchar
  • 表的字段顺序固定长度的字段优先
  • 组合索引代替多个单列索引(因为mysql中每次只能使用一个索引,因此常用多个条件查询时更适合使用组合索引)
  • 尽可能使用短索引
  • 使用链接(JOIN)来代替子查询(Sub-Queries)
  • 连表时注意条件类型需一致
  • 索引散列值(重复少)不适合建索引,例:性别不适合

7、联合索引和覆盖索引

7.1 联合索引

联合索引是指对表上的多个列合起来作一个索引。联合索引的建立方法与单个索引的建立方法同样,不一样之处仅在于有多个索引列,以下:

mysql> create table t(
    -> a int,
    -> b int,
    -> primary key(a),
    -> key idx_a_b(a,b)
    -> );
Query OK, 0 rows affected (0.11 sec)

那么什么时候须要使用联合索引呢?在讨论这个问题以前,先来看一下联合索引内部的结果。从本质上来讲,联合索引就是一棵B+树,不一样的是联合索引的键值得数量不是1,而是>=2。接着来讨论两个整型列组成的联合索引,假定两个键值得名称分别为a、b如图:

204-MySQL索引原理-16.png?x-oss-process=style/watermark

能够看到这与咱们以前看到的单个键的B+树并无什么不一样,键值都是排序的,经过叶子结点能够逻辑上顺序地读出全部数据,就上面的例子来讲,即(1,1),(1,2),(2,1),(2,4),(3,1),(3,2),数据按(a,b)的顺序进行了存放。

所以,对于查询select * from table where a=xxx and b=xxx, 显然是可使用(a,b) 这个联合索引的,对于单个列a的查询select * from table where a=xxx,也是可使用(a,b)这个索引的。

但对于b列的查询select * from table where b=xxx,则不可使用(a,b) 索引,其实你不难发现缘由,叶子节点上b的值为一、二、一、四、一、2显然不是排序的,所以对于b列的查询使用不到(a,b) 索引

联合索引的第二个好处是在第一个键相同的状况下,已经对第二个键进行了排序处理,例如在不少状况下应用程序都须要查询某个用户的购物状况,并按照时间进行排序,最后取出最近三次的购买记录,这时使用联合索引能够帮咱们避免多一次的排序操做,由于索引自己在叶子节点已经排序了,以下

# ===========准备表==============
create table buy_log(
    userid int unsigned not null,
    buy_date date
);

insert into buy_log values
(1,'2009-01-01'),
(2,'2009-01-01'),
(3,'2009-01-01'),
(1,'2009-02-01'),
(3,'2009-02-01'),
(1,'2009-03-01'),
(1,'2009-04-01');

alter table buy_log add key(userid);
alter table buy_log add key(userid,buy_date);

# ===========验证==============
mysql> show create table buy_log;
| buy_log | CREATE TABLE `buy_log` (
  `userid` int(10) unsigned NOT NULL,
  `buy_date` date DEFAULT NULL,
  KEY `userid` (`userid`),
  KEY `userid_2` (`userid`,`buy_date`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 |

# 能够看到possible_keys在这里有两个索引能够用,分别是单个索引userid与联合索引userid_2,可是优化器最终选择了使用的key是userid由于该索引的叶子节点包含单个键值,因此理论上一个页能存放的记录应该更多
mysql> explain select * from buy_log where userid=2;
+----+-------------+---------+------+-----------------+--------+---------+-------+------+-------+
| id | select_type | table   | type | possible_keys   | key    | key_len | ref   | rows | Extra |
+----+-------------+---------+------+-----------------+--------+---------+-------+------+-------+
|  1 | SIMPLE      | buy_log | ref  | userid,userid_2 | userid | 4       | const |    1 |       |
+----+-------------+---------+------+-----------------+--------+---------+-------+------+-------+
row in set (0.00 sec)

# 接着假定要取出userid为1的最近3次的购买记录,用的就是联合索引userid_2了,由于在这个索引中,在userid=1的状况下,buy_date都已经排序好了
mysql> explain select * from buy_log where userid=1 order by buy_date desc limit 3;
+--+-----------+-------+----+---------------+--------+-------+-----+----+------------------------+
|id|select_type|table  |type|possible_keys  | key    |key_len|ref  |rows| Extra                  |
+--+-----------+-------+----+---------------+--------+-------+-----+----+------------------------+
| 1|SIMPLE     |buy_log|ref |userid,userid_2|userid_2| 4     |const|  4 |Using where; Using index|
+--+-----------+-------+----+---------------+--------+-------+-----+----+------------------------+
row in set (0.00 sec)

# ps:若是extra的排序显示是Using filesort,则意味着在查出数据后须要二次排序(以下查询语句,没有先用where userid=3先定位范围,因而即使命中索引也没用,须要二次排序)
mysql> explain select * from buy_log order by buy_date desc limit 3;
+--+-----------+-------+-----+-------------+--------+-------+----+----+---------------------------+
|id|select_type| table |type |possible_keys|key     |key_len|ref |rows|Extra                      |
+--+-----------+-------+-----+-------------+--------+-------+----+----+---------------------------+
| 1|SIMPLE     |buy_log|index| NULL        |userid_2| 8     |NULL|  7 |Using index; Using filesort|
+--+-----------+-------+-----+-------------+--------+-------+----+----+---------------------------+


# 对于联合索引(a,b),下述语句能够直接使用该索引,无需二次排序
select ... from table where a=xxx order by b;

# 而后对于联合索引(a,b,c)来首,下列语句一样能够直接经过索引获得结果
select ... from table where a=xxx order by b;
select ... from table where a=xxx and b=xxx order by c;

# 可是对于联合索引(a,b,c),下列语句不能经过索引直接获得结果,还须要本身执行一次filesort操做,由于索引(a,c)并未排序
select ... from table where a=xxx order by c;

7.2 覆盖索引

InnoDB存储引擎支持覆盖索引(covering index,或称索引覆盖),即从辅助索引中就能够获得查询记录,而不须要查询汇集索引中的记录。

使用覆盖索引的一个好处是:辅助索引不包含整行记录的全部信息,故其大小要远小于汇集索引,所以能够减小大量的IO操做。


注意:覆盖索引技术最先是在InnoDB Plugin中完成并实现,这意味着对于InnoDB版本小于1.0的,或者MySQL数据库版本为5.0如下的,InnoDB存储引擎不支持覆盖索引特性。


对于InnoDB存储引擎的辅助索引而言,因为其包含了主键信息,所以其叶子节点存放的数据为(primary key1,priamey key2,...,key1,key2,...)。例如:

select age from s1 where id=123 and name = 'nick'; #id字段有索引,可是name字段没有索引,该sql命中了索引,但未覆盖,须要去汇集索引中再查找详细信息。
最牛逼的状况是,索引字段覆盖了全部,那全程经过索引来加速查询以及获取结果就ok了
mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id | int(11) | NO | | NULL | |
| name | varchar(20) | YES | | NULL | |
| gender | char(6) | YES | | NULL | |
| email | varchar(50) | YES | | NULL | |
+--------+-------------+------+-----+---------+-------+
rows in set (0.21 sec)

mysql> explain select name from s1 where id=1000; #没有任何索引
+--+-----------+-----+----------+----+-------------+----+-------+----+-------+--------+-----------+
|id|select_type|table|partitions|type|possible_keys|key |key_len|ref | rows  |filtered| Extra     |
+--+-----------+-----+----------+----+-------------+----+-------+----+-------+--------+-----------+
| 1| SIMPLE    | s1  | NULL     |ALL | NULL        |NULL| NULL  |NULL|2688336| 10.00  |Using where|
+--+-----------+-----+----------+----+-------------+----+-------+----+-------+--------+-----------+
row in set, 1 warning (0.00 sec)

mysql> create index idx_id on s1(id); #建立索引
Query OK, 0 rows affected (4.16 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> explain select name from s1 where id=1000; #命中辅助索引,可是未覆盖索引,还须要从汇集索引中查找name
+--+-----------+-----+----------+----+-------------+------+-------+-----+----+--------+-----+
|id|select_type|table|partitions|type|possible_keys|   key|key_len| ref |rows|filtered|Extra|
+--+-----------+-----+----------+----+-------------+------+-------+-----+----+--------+-----+
| 1| SIMPLE    | s1  | NULL     | ref| idx_id      |idx_id| 4     |const| 1  | 100.00 | NULL|
+--+-----------+-----+----------+----+-------------+------+-------+-----+----+--------+-----+
row in set, 1 warning (0.08 sec)

mysql> explain select id from s1 where id=1000; #在辅助索引中就找到了所有信息,Using index表明覆盖索引
+--+-----------+-----+----------+----+-------------+------+-------+-------+------+----------+-----+
|id|select_type|table|partitions|type|possible_keys| key  |key_len| ref |rows|filtered| Extra     |
+--+-----------+-----+----------+----+--------------------+-------+-------+------+----------+-----+
| 1| SIMPLE    | s1  | NULL     | ref| idx_id      |idx_id|  4    |const| 1  | 100.00 |Using index|
+--+-----------+-----+----------+----+-------------+------+-------+-----+----+--------+-----------+
row in set, 1 warning (0.03 sec)

覆盖索引的另一个好处是对某些统计问题而言的。基于上一小结建立的表buy_log,查询计划以下:

mysql> explain select count(*) from buy_log;
+--+-----------+-------+-----+-------------+------+-------+----+----+-----------+
|id|select_type|table  | type|possible_keys|key   |key_len|ref |rows|Extra      |
+--+-----------+-------+-----+-------------+------+-------+----+----+-----------+
| 1| SIMPLE    |buy_log|index| NULL        |userid| 4     |NULL|  7 |Using index|
+--+-----------+-------+-----+-------------+------+-------+----+----+-----------+
row in set (0.00 sec)

innodb存储引擎并不会选择经过查询汇集索引来进行统计。因为buy_log表有辅助索引,而辅助索引远小于汇集索引,选择辅助索引能够减小IO操做,故优化器的选择如上key为userid辅助索引

对于(a,b)形式的联合索引,通常是不能够选择b中所谓的查询条件。但若是是统计操做,而且是覆盖索引,则优化器仍是会选择使用该索引,以下:

# 联合索引userid_2(userid,buy_date),通常状况,咱们按照buy_date是没法使用该索引的,但特殊状况下:查询语句是统计操做,且是覆盖索引,则按照buy_date当作查询条件时,也可使用该联合索引
mysql> explain select count(*) from buy_log where buy_date >= '2011-01-01' and buy_date < '2011-02-01';
+--+-----------+-------+-----+-------------+--------+-------+----+----+------------------------+
|id|select_type| table |type |possible_keys| key    |key_len|ref |rows|Extra                   |
+--+-----------+-------+-----+-------------+--------+-------+----+----+------------------------+
| 1| SIMPLE    |buy_log|index| NULL        |userid_2| 8     |NULL|  7 |Using where; Using index|
+--+-----------+-------+-----+-------------+--------+-------+----+----+------------------------+
row in set (0.00 sec)

7.3 合并索引

mysql> explain select count(email) from index_t where   id = 1000000  or email='eva100000@oldboy';
+--+-----------+------+--------------+--------------------------------+---------------+--------+-----+----+-----------------------------------------+
| id | select_type| table  | type                | possible_keys                              | key                   | key_len | ref    |rows | Extra                                                           |
+--+-----------+------+--------------+--------------------------------+---------------+--------+-----+----+-----------------------------------------+
|  1 | SIMPLE      | index_t| index_merge | PRIMARY,email,ind_id,ind_email | PRIMARY,email | 4,51   |NULL|   2    |Using union(PRIMARY,email); Using where |
+--+-----------+------+--------------+--------------------------------+---------------+--------+-----+----+-----------------------------------------+
row in set (0.01 sec)

8、查询优化神器-explain

MySQL性能分析之Explain:http://www.javashuo.com/article/p-pzshfquv-dk.html

9、慢查询优化的基本步骤

  1. 先运行看看是否真的很慢,注意设置SQL_NO_CACHE
  2. where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每一个字段分别查询,看哪一个字段的区分度最高
  3. explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
  4. order by limit 形式的sql语句让排序的表优先查
  5. 了解业务方使用场景
  6. 加索引时参照建索引的几大原则
  7. 观察结果,不符合预期继续从0分析

10、慢日志管理

慢日志
            - 执行时间 > 10
            - 未命中索引
            - 日志文件路径
            
        配置:
            - 内存
                show variables like '%query%';
                show variables like '%queries%';
                set global 变量名 = 值
            - 配置文件
                mysqld --defaults-file='E:\wupeiqi\mysql-5.7.16-winx64\mysql-5.7.16-winx64\my-default.ini'
                
                my.conf内容:
                    slow_query_log = ON
                    slow_query_log_file = D:/....
                    
                注意:修改配置文件以后,须要重启服务
MySQL日志管理
========================================================
错误日志: 记录 MySQL 服务器启动、关闭及运行错误等信息
二进制日志: 又称binlog日志,以二进制文件的方式记录数据库中除 SELECT 之外的操做
查询日志: 记录查询的信息
慢查询日志: 记录执行时间超过指定时间的操做
中继日志: 备库将主库的二进制日志复制到本身的中继日志中,从而在本地进行重放
通用日志: 审计哪一个帐号、在哪一个时段、作了哪些事件
事务日志或称redo日志: 记录Innodb事务相关的如事务执行时间、检查点等
========================================================
1、bin-log
1. 启用
# vim /etc/my.cnf
[mysqld]
log-bin[=dir\[filename]]
# service mysqld restart
2. 暂停
//仅当前会话
SET SQL_LOG_BIN=0;
SET SQL_LOG_BIN=1;
3. 查看
查看所有:
# mysqlbinlog mysql.000002
按时间:
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56"
# mysqlbinlog mysql.000002 --stop-datetime="2012-12-05 11:02:54"
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" --stop-datetime="2012-12-05 11:02:54" 

按字节数:
# mysqlbinlog mysql.000002 --start-position=260
# mysqlbinlog mysql.000002 --stop-position=260
# mysqlbinlog mysql.000002 --start-position=260 --stop-position=930
4. 截断bin-log(产生新的bin-log文件)
a. 重启mysql服务器
b. # mysql -uroot -p123 -e 'flush logs'
5. 删除bin-log文件
# mysql -uroot -p123 -e 'reset master' 


2、查询日志
启用通用查询日志
# vim /etc/my.cnf
[mysqld]
log[=dir\[filename]]
# service mysqld restart

3、慢查询日志
启用慢查询日志
# vim /etc/my.cnf
[mysqld]
log-slow-queries[=dir\[filename]]
long_query_time=n
# service mysqld restart
MySQL 5.6:
slow-query-log=1
slow-query-log-file=slow.log
long_query_time=3  单位为秒
查看慢查询日志
测试:BENCHMARK(count,expr)
SELECT BENCHMARK(50000000,2*3);
相关文章
相关标签/搜索