目录html
通常的应用系统,读写比例在10:1左右,并且插入操做和通常的更新操做不多出现性能问题,在生产环境中,咱们遇到最多的,也是最容易出问题的,仍是一些复杂的查询操做,所以对查询语句的优化显然是重中之重。提及加速查询,就不得不提到索引了。python
索引在MySQL中也叫是一种“键”,是存储引擎用于快速找到记录的一种数据结构。索引对于良好的性能很是关键,尤为是当表中的数据量愈来愈大时,索引对于性能的影响愈发重要。mysql
索引优化应该是对查询性能优化最有效的手段了。索引可以轻易将查询性能提升好几个数量级。ios
索引至关于字典的音序表,若是要查某个字,若是不使用音序表,则须要从几百页中逐页去查。算法
索引是应用程序设计和开发的一个重要方面。若索引太多,应用程序的性能可能会受到影响。而索引太少,对查询性能又会产生影响,要找到一个平衡点,这对应用程序的性能相当重要。一些开发人员老是在过后才想起添加索引----我一直认为,这源于一种错误的开发模式。若是知道数据的使用,从一开始就应该在须要处添加索引。开发人员每每对数据库的使用停留在应用的层面,好比编写SQL语句、存储过程之类,他们甚至可能不知道索引的存在,或认为过后让相关DBA加上便可。DBA每每不够了解业务的数据流,而添加索引须要经过监控大量的SQL语句进而从中找到问题,这个步骤所需的时间确定是远大于初始添加索引所需的时间,而且可能会遗漏一部分的索引。固然索引也并非越多越好,我曾经遇到过这样一个问题:某台MySQL服务器iostat显示磁盘使用率一直处于100%,通过分析后发现是因为开发人员添加了太多的索引,在删除一些没必要要的索引以后,磁盘使用率立刻降低为20%。可见索引的添加也是很是有技术含量的。sql
索引的目的在于提升查询效率,与咱们查阅图书所用的目录是一个道理:先定位到章,而后定位到该章下的一个小节,而后找到页数。类似的例子还有:查字典,查火车车次,飞机航班等数据库
本质都是:经过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,咱们能够老是用同一种查找方式来锁定数据。vim
数据库也是同样,但显然要复杂的多,由于不只面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对全部的问题呢?咱们回想字典的例子,能不能把数据分红段,而后分段查询呢?最简单的若是1000条数据,1到100分红第一段,101到200分红第二段,201到300分红第三段......这样查第250条数据,只要找第三段就能够了,一会儿去除了90%的无效数据。但若是是1千万的记录呢,分红几段比较好?稍有算法基础的同窗会想到搜索树,其平均复杂度是lgN,具备不错的查询性能。但这里咱们忽略了一个关键的问题,复杂度模型是基于每次相同的操做成原本考虑的。而数据库实现比较复杂,一方面数据是保存在磁盘上的,另一方面为了提升性能,每次又能够把部分数据读入内存来计算,由于咱们知道访问磁盘的成本大概是访问内存的十万倍左右,因此简单的搜索树难以知足复杂的应用场景。性能优化
前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间能够分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所须要的时间,主流磁盘通常在5ms如下;旋转延迟就是咱们常常据说的磁盘转速,好比一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,通常在零点几毫秒,相对于前两个时间能够忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS(Million Instructions Per Second)的机器每秒能够执行5亿条指令,由于指令依靠的是电的性质,换句话说执行一次IO的时间能够执行约450万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。下图是计算机硬件延迟的对比图,供你们参考:服务器
考虑到磁盘IO是很是高昂的操做,计算机操做系统作了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,由于局部预读性原理告诉咱们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据咱们称之为一页(page)。具体一页有多大数据跟操做系统有关,通常为4k或8k,也就是咱们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计很是有帮助。
MySQL索引的数据结构-B+树介绍:http://www.javashuo.com/article/p-rzligenp-cy.html
普通索引INDEX:加速查找
举个例子来讲,好比你在为某商场作一个会员卡的系统。 这个系统有一个会员表 有下列字段: 会员编号 INT 会员姓名 VARCHAR(10) 会员身份证号码 VARCHAR(18) 会员电话 VARCHAR(10) 会员住址 VARCHAR(50) 会员备注信息 TEXT 那么这个 会员编号,做为主键,使用 PRIMARY 会员姓名 若是要建索引的话,那么就是普通的 INDEX 会员身份证号码 若是要建索引的话,那么能够选择 UNIQUE (惟一的,不容许重复) # 除此以外还有全文索引,即FULLTEXT 会员备注信息 , 若是须要建索引的话,能够选择全文搜索。 用于搜索很长一篇文章的时候,效果最好。 用在比较短的文本,若是就一两行字的,普通的 INDEX 也能够。 但其实对于全文搜索,咱们并不会使用MySQL自带的该索引,而是会选择第三方软件如Sphinx,专门来作全文搜索。 # 其余的如空间索引SPATIAL,了解便可,几乎不用 各个索引的应用场景 各个索引的应用场景
咱们能够在建立上述索引的时候,为其指定索引类型,分两类:
不一样的存储引擎支持的索引类型也不同:
# 方法一:建立表时 CREATE TABLE 表名 ( 字段名1 数据类型 [完整性约束条件…], 字段名2 数据类型 [完整性约束条件…], [UNIQUE | FULLTEXT | SPATIAL ] INDEX | KEY [索引名] (字段名[(长度)] [ASC |DESC]) ); # 方法二:CREATE在已存在的表上建立索引 CREATE [UNIQUE | FULLTEXT | SPATIAL ] INDEX 索引名 ON 表名 (字段名[(长度)] [ASC |DESC]) ; # 方法三:ALTER TABLE在已存在的表上建立索引 ALTER TABLE 表名 ADD [UNIQUE | FULLTEXT | SPATIAL ] INDEX 索引名 (字段名[(长度)] [ASC |DESC]) ; # 删除索引:DROP INDEX 索引名 ON 表名字;
# 方式一 create table t1( id int, name char, age int, sex enum('male','female'), unique key uni_id(id), index ix_name(name) # index没有key ); create table t1( id int, name char, age int, sex enum('male','female'), unique key uni_id(id), index(name) # index没有key ); # 方式二 create index ix_age on t1(age); # 方式三 alter table t1 add index ix_sex(sex); alter table t1 add index(sex); # 查看 mysql> show create table t1; | t1 | CREATE TABLE `t1` ( `id` int(11) DEFAULT NULL, `name` char(1) DEFAULT NULL, `age` int(11) DEFAULT NULL, `sex` enum('male','female') DEFAULT NULL, UNIQUE KEY `uni_id` (`id`), KEY `ix_name` (`name`), KEY `ix_age` (`age`), KEY `ix_sex` (`sex`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1
# 1. 准备表 create table s1( id int, name varchar(20), gender char(6), email varchar(50) ); # 2. 建立存储过程,实现批量插入记录 delimiter $$ # 声明存储过程的结束符号为$$ create procedure auto_insert1() BEGIN declare i int default 1; while(i<3000000)do insert into s1 values(i,'eva','female',concat('eva',i,'@oldboy')); set i=i+1; end while; END$$ # $$结束 delimiter ; # 从新声明分号为结束符号 # 3. 查看存储过程 show create procedure auto_insert1\G # 4. 调用存储过程 call auto_insert1();
一、在没有索引的前提下测试查询速度
无索引:mysql根本就不知道究竟是否存在id等于333333333的记录,只能把数据表从头至尾扫描一遍,此时有多少个磁盘块就须要进行多少IO操做,因此查询速度很慢
mysql> select * from s1 where id=333333333; Empty set (0.33 sec)
二、在表中已经存在大量数据的前提下,为某个字段段创建索引,创建速度会很慢
三、在索引创建完毕后,以该字段为查询条件时,查询速度提高明显
注意:
select * from s1 where id = 333;
就须要为id加上索引create index idx on s1(id);
会扫描表中全部的数据,而后以id为数据项,建立索引结构,存放于硬盘的表中。建完之后,再查询就会很快了。MySAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而在innodb中,表数据文件自己就是按照B+Tree(BTree即Balance True)组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,所以innodb表数据文件自己就是主索引。
由于inndob的数据文件要按照主键汇集,因此innodb要求表必需要有主键(Myisam能够没有),若是没有显式定义,则mysql系统会自动选择一个能够惟一标识数据记录的列做为主键,若是不存在这种列,则mysql会自动为innodb表生成一个隐含字段做为主键,这字段的长度为6个字节,类型为长整型.
并非说咱们建立了索引就必定会加快查询速度,若想利用索引达到预想的提升查询速度的效果,咱们在添加索引时,必须遵循如下问题:
一、范围问题,或者说条件不明确,条件中出现这些符号或关键字:>、>=、<、<=、!= 、between...and...、like、大于号、小于号
不等于!=
between ...and...
like
二、尽可能选择区分度高的列做为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大咱们扫描的记录数越少,惟一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不一样,这个值也很难肯定,通常须要join的字段咱们都要求是0.1以上,即平均1条扫描10条记录。
先把表中的索引都删除,让咱们专心研究区分度的问题:
mysql> desc s1; +--------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------+-------------+------+-----+---------+-------+ | id | int(11) | YES | MUL | NULL | | | name | varchar(20) | YES | | NULL | | | gender | char(5) | YES | | NULL | | | email | varchar(50) | YES | MUL | NULL | | +--------+-------------+------+-----+---------+-------+ rows in set (0.00 sec) mysql> drop index a on s1; Query OK, 0 rows affected (0.20 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> drop index d on s1; Query OK, 0 rows affected (0.18 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> desc s1; +--------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------+-------------+------+-----+---------+-------+ | id | int(11) | YES | | NULL | | | name | varchar(20) | YES | | NULL | | | gender | char(5) | YES | | NULL | | | email | varchar(50) | YES | | NULL | | +--------+-------------+------+-----+---------+-------+ rows in set (0.00 sec)
分析缘由:
咱们编写存储过程为表s1批量添加记录,name字段的值均为egon,也就是说name这个字段的区分度很低(gender字段也是同样的,咱们稍后再搭理它)
回忆b+树的结构,查询的速度与树的高度成反比,要想将树的高低控制的很低,须要保证:在某一层内数据项均是按照从左到右,从小到大的顺序依次排开,即左1<左2<左3<...
而对于区分度低的字段,没法找到大小关系,由于值都是相等的,毫无疑问,还想要用b+树存放这些等值的数据,只能增长树的高度,字段的区分度越低,则树的高度越高。极端的状况,索引字段的值都同样,那么b+树几乎成了一根棍。本例中就是这种极端的状况,name字段全部的值均为'nick'
如今咱们得出一个结论:为区分度低的字段创建索引,索引树的高度会很高,然而这具体会带来什么影响呢???
若是条件是name='xxxx',那么确定是能够第一时间判断出'xxxx'是不在索引树中的(由于树中全部的值均为'nick’),因此查询速度很快
若是条件正好是name='nick',查询时,咱们永远没法从树的某个位置获得一个明确的范围,只能往下找,往下找,往下找。。。这与全表扫描的IO次数没有多大区别,因此速度很慢
三、索引列不能在条件中参与计算,保持列“干净”,好比from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,缘由很简单,b+树中存的都是数据表中的字段值,但进行检索时,须要把全部元素都应用函数才能比较,显然成本太大。因此语句应该写成create_time = unix_timestamp(’2014-05-29’)
四、and/or
a = 10 and b = 'xxx' and c > 3 and d =4
在左边条件成立可是索引字段的区分度低的状况下(name与gender均属于这种状况),会依次往右找到一个区分度高的索引字段,加速查询。
通过分析,在条件为name='nick' and gender='male' and id>333 and email='xxx'的状况下,咱们彻底不必为前三个条件的字段加索引,由于只能用上email字段的索引,前三个字段的索引反而会下降咱们的查询效率
五、最左前缀匹配原则,很是重要的原则,对于组合索引mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就中止匹配(指的是范围大了,有索引速度也慢),好比a = 1 and b = 2 and c > 3 and d = 4 若是创建(a,b,c,d)顺序的索引,d是用不到索引的,若是创建(a,b,d,c)的索引则均可以用到,a,b,d的顺序能够任意调整。
六、其余状况
- 使用函数 select * from tb1 where reverse(email) = 'nick'; - 类型不一致 若是列是字符串类型,传入条件是必须用引号引发来,否则... select * from tb1 where email = 999; #排序条件为索引,则select字段必须也是索引字段,不然没法命中 - order by select name from s1 order by email desc; 当根据索引排序时候,select查询的字段若是不是索引,则速度仍然很慢 select email from s1 order by email desc; 特别的:若是对主键排序,则仍是速度很快: select * from tb1 order by nid desc; - 组合索引最左前缀 若是组合索引为:(name,email) name and email -- 命中索引 name -- 命中索引 email -- 未命中索引 - count(1)或count(列)代替count(*)在mysql中没有差异了 - create index xxxx on tb(title(19)) #text类型,必须制定长度
联合索引是指对表上的多个列合起来作一个索引。联合索引的建立方法与单个索引的建立方法同样,不一样之处仅在于有多个索引列,以下:
mysql> create table t( -> a int, -> b int, -> primary key(a), -> key idx_a_b(a,b) -> ); Query OK, 0 rows affected (0.11 sec)
那么什么时候须要使用联合索引呢?在讨论这个问题以前,先来看一下联合索引内部的结果。从本质上来讲,联合索引就是一棵B+树,不一样的是联合索引的键值得数量不是1,而是>=2。接着来讨论两个整型列组成的联合索引,假定两个键值得名称分别为a、b如图:
能够看到这与咱们以前看到的单个键的B+树并无什么不一样,键值都是排序的,经过叶子结点能够逻辑上顺序地读出全部数据,就上面的例子来讲,即(1,1),(1,2),(2,1),(2,4),(3,1),(3,2),数据按(a,b)的顺序进行了存放。
所以,对于查询select * from table where a=xxx and b=xxx, 显然是可使用(a,b) 这个联合索引的,对于单个列a的查询select * from table where a=xxx,也是可使用(a,b)这个索引的。
但对于b列的查询select * from table where b=xxx,则不可使用(a,b) 索引,其实你不难发现缘由,叶子节点上b的值为一、二、一、四、一、2显然不是排序的,所以对于b列的查询使用不到(a,b) 索引
联合索引的第二个好处是在第一个键相同的状况下,已经对第二个键进行了排序处理,例如在不少状况下应用程序都须要查询某个用户的购物状况,并按照时间进行排序,最后取出最近三次的购买记录,这时使用联合索引能够帮咱们避免多一次的排序操做,由于索引自己在叶子节点已经排序了,以下
# ===========准备表============== create table buy_log( userid int unsigned not null, buy_date date ); insert into buy_log values (1,'2009-01-01'), (2,'2009-01-01'), (3,'2009-01-01'), (1,'2009-02-01'), (3,'2009-02-01'), (1,'2009-03-01'), (1,'2009-04-01'); alter table buy_log add key(userid); alter table buy_log add key(userid,buy_date); # ===========验证============== mysql> show create table buy_log; | buy_log | CREATE TABLE `buy_log` ( `userid` int(10) unsigned NOT NULL, `buy_date` date DEFAULT NULL, KEY `userid` (`userid`), KEY `userid_2` (`userid`,`buy_date`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 | # 能够看到possible_keys在这里有两个索引能够用,分别是单个索引userid与联合索引userid_2,可是优化器最终选择了使用的key是userid由于该索引的叶子节点包含单个键值,因此理论上一个页能存放的记录应该更多 mysql> explain select * from buy_log where userid=2; +----+-------------+---------+------+-----------------+--------+---------+-------+------+-------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+---------+------+-----------------+--------+---------+-------+------+-------+ | 1 | SIMPLE | buy_log | ref | userid,userid_2 | userid | 4 | const | 1 | | +----+-------------+---------+------+-----------------+--------+---------+-------+------+-------+ row in set (0.00 sec) # 接着假定要取出userid为1的最近3次的购买记录,用的就是联合索引userid_2了,由于在这个索引中,在userid=1的状况下,buy_date都已经排序好了 mysql> explain select * from buy_log where userid=1 order by buy_date desc limit 3; +--+-----------+-------+----+---------------+--------+-------+-----+----+------------------------+ |id|select_type|table |type|possible_keys | key |key_len|ref |rows| Extra | +--+-----------+-------+----+---------------+--------+-------+-----+----+------------------------+ | 1|SIMPLE |buy_log|ref |userid,userid_2|userid_2| 4 |const| 4 |Using where; Using index| +--+-----------+-------+----+---------------+--------+-------+-----+----+------------------------+ row in set (0.00 sec) # ps:若是extra的排序显示是Using filesort,则意味着在查出数据后须要二次排序(以下查询语句,没有先用where userid=3先定位范围,因而即使命中索引也没用,须要二次排序) mysql> explain select * from buy_log order by buy_date desc limit 3; +--+-----------+-------+-----+-------------+--------+-------+----+----+---------------------------+ |id|select_type| table |type |possible_keys|key |key_len|ref |rows|Extra | +--+-----------+-------+-----+-------------+--------+-------+----+----+---------------------------+ | 1|SIMPLE |buy_log|index| NULL |userid_2| 8 |NULL| 7 |Using index; Using filesort| +--+-----------+-------+-----+-------------+--------+-------+----+----+---------------------------+ # 对于联合索引(a,b),下述语句能够直接使用该索引,无需二次排序 select ... from table where a=xxx order by b; # 而后对于联合索引(a,b,c)来首,下列语句一样能够直接经过索引获得结果 select ... from table where a=xxx order by b; select ... from table where a=xxx and b=xxx order by c; # 可是对于联合索引(a,b,c),下列语句不能经过索引直接获得结果,还须要本身执行一次filesort操做,由于索引(a,c)并未排序 select ... from table where a=xxx order by c;
InnoDB存储引擎支持覆盖索引(covering index,或称索引覆盖),即从辅助索引中就能够获得查询记录,而不须要查询汇集索引中的记录。
使用覆盖索引的一个好处是:辅助索引不包含整行记录的全部信息,故其大小要远小于汇集索引,所以能够减小大量的IO操做。
注意:覆盖索引技术最先是在InnoDB Plugin中完成并实现,这意味着对于InnoDB版本小于1.0的,或者MySQL数据库版本为5.0如下的,InnoDB存储引擎不支持覆盖索引特性。
对于InnoDB存储引擎的辅助索引而言,因为其包含了主键信息,所以其叶子节点存放的数据为(primary key1,priamey key2,...,key1,key2,...)。例如:
select age from s1 where id=123 and name = 'nick'; #id字段有索引,可是name字段没有索引,该sql命中了索引,但未覆盖,须要去汇集索引中再查找详细信息。 最牛逼的状况是,索引字段覆盖了全部,那全程经过索引来加速查询以及获取结果就ok了 mysql> desc s1; +--------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------+-------------+------+-----+---------+-------+ | id | int(11) | NO | | NULL | | | name | varchar(20) | YES | | NULL | | | gender | char(6) | YES | | NULL | | | email | varchar(50) | YES | | NULL | | +--------+-------------+------+-----+---------+-------+ rows in set (0.21 sec) mysql> explain select name from s1 where id=1000; #没有任何索引 +--+-----------+-----+----------+----+-------------+----+-------+----+-------+--------+-----------+ |id|select_type|table|partitions|type|possible_keys|key |key_len|ref | rows |filtered| Extra | +--+-----------+-----+----------+----+-------------+----+-------+----+-------+--------+-----------+ | 1| SIMPLE | s1 | NULL |ALL | NULL |NULL| NULL |NULL|2688336| 10.00 |Using where| +--+-----------+-----+----------+----+-------------+----+-------+----+-------+--------+-----------+ row in set, 1 warning (0.00 sec) mysql> create index idx_id on s1(id); #建立索引 Query OK, 0 rows affected (4.16 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> explain select name from s1 where id=1000; #命中辅助索引,可是未覆盖索引,还须要从汇集索引中查找name +--+-----------+-----+----------+----+-------------+------+-------+-----+----+--------+-----+ |id|select_type|table|partitions|type|possible_keys| key|key_len| ref |rows|filtered|Extra| +--+-----------+-----+----------+----+-------------+------+-------+-----+----+--------+-----+ | 1| SIMPLE | s1 | NULL | ref| idx_id |idx_id| 4 |const| 1 | 100.00 | NULL| +--+-----------+-----+----------+----+-------------+------+-------+-----+----+--------+-----+ row in set, 1 warning (0.08 sec) mysql> explain select id from s1 where id=1000; #在辅助索引中就找到了所有信息,Using index表明覆盖索引 +--+-----------+-----+----------+----+-------------+------+-------+-------+------+----------+-----+ |id|select_type|table|partitions|type|possible_keys| key |key_len| ref |rows|filtered| Extra | +--+-----------+-----+----------+----+--------------------+-------+-------+------+----------+-----+ | 1| SIMPLE | s1 | NULL | ref| idx_id |idx_id| 4 |const| 1 | 100.00 |Using index| +--+-----------+-----+----------+----+-------------+------+-------+-----+----+--------+-----------+ row in set, 1 warning (0.03 sec)
覆盖索引的另一个好处是对某些统计问题而言的。基于上一小结建立的表buy_log,查询计划以下:
mysql> explain select count(*) from buy_log; +--+-----------+-------+-----+-------------+------+-------+----+----+-----------+ |id|select_type|table | type|possible_keys|key |key_len|ref |rows|Extra | +--+-----------+-------+-----+-------------+------+-------+----+----+-----------+ | 1| SIMPLE |buy_log|index| NULL |userid| 4 |NULL| 7 |Using index| +--+-----------+-------+-----+-------------+------+-------+----+----+-----------+ row in set (0.00 sec)
innodb存储引擎并不会选择经过查询汇集索引来进行统计。因为buy_log表有辅助索引,而辅助索引远小于汇集索引,选择辅助索引能够减小IO操做,故优化器的选择如上key为userid辅助索引
对于(a,b)形式的联合索引,通常是不能够选择b中所谓的查询条件。但若是是统计操做,而且是覆盖索引,则优化器仍是会选择使用该索引,以下:
# 联合索引userid_2(userid,buy_date),通常状况,咱们按照buy_date是没法使用该索引的,但特殊状况下:查询语句是统计操做,且是覆盖索引,则按照buy_date当作查询条件时,也可使用该联合索引 mysql> explain select count(*) from buy_log where buy_date >= '2011-01-01' and buy_date < '2011-02-01'; +--+-----------+-------+-----+-------------+--------+-------+----+----+------------------------+ |id|select_type| table |type |possible_keys| key |key_len|ref |rows|Extra | +--+-----------+-------+-----+-------------+--------+-------+----+----+------------------------+ | 1| SIMPLE |buy_log|index| NULL |userid_2| 8 |NULL| 7 |Using where; Using index| +--+-----------+-------+-----+-------------+--------+-------+----+----+------------------------+ row in set (0.00 sec)
mysql> explain select count(email) from index_t where id = 1000000 or email='eva100000@oldboy'; +--+-----------+------+--------------+--------------------------------+---------------+--------+-----+----+-----------------------------------------+ | id | select_type| table | type | possible_keys | key | key_len | ref |rows | Extra | +--+-----------+------+--------------+--------------------------------+---------------+--------+-----+----+-----------------------------------------+ | 1 | SIMPLE | index_t| index_merge | PRIMARY,email,ind_id,ind_email | PRIMARY,email | 4,51 |NULL| 2 |Using union(PRIMARY,email); Using where | +--+-----------+------+--------------+--------------------------------+---------------+--------+-----+----+-----------------------------------------+ row in set (0.01 sec)
MySQL性能分析之Explain:http://www.javashuo.com/article/p-pzshfquv-dk.html
慢日志 - 执行时间 > 10 - 未命中索引 - 日志文件路径 配置: - 内存 show variables like '%query%'; show variables like '%queries%'; set global 变量名 = 值 - 配置文件 mysqld --defaults-file='E:\wupeiqi\mysql-5.7.16-winx64\mysql-5.7.16-winx64\my-default.ini' my.conf内容: slow_query_log = ON slow_query_log_file = D:/.... 注意:修改配置文件以后,须要重启服务
MySQL日志管理 ======================================================== 错误日志: 记录 MySQL 服务器启动、关闭及运行错误等信息 二进制日志: 又称binlog日志,以二进制文件的方式记录数据库中除 SELECT 之外的操做 查询日志: 记录查询的信息 慢查询日志: 记录执行时间超过指定时间的操做 中继日志: 备库将主库的二进制日志复制到本身的中继日志中,从而在本地进行重放 通用日志: 审计哪一个帐号、在哪一个时段、作了哪些事件 事务日志或称redo日志: 记录Innodb事务相关的如事务执行时间、检查点等 ======================================================== 1、bin-log 1. 启用 # vim /etc/my.cnf [mysqld] log-bin[=dir\[filename]] # service mysqld restart 2. 暂停 //仅当前会话 SET SQL_LOG_BIN=0; SET SQL_LOG_BIN=1; 3. 查看 查看所有: # mysqlbinlog mysql.000002 按时间: # mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" # mysqlbinlog mysql.000002 --stop-datetime="2012-12-05 11:02:54" # mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" --stop-datetime="2012-12-05 11:02:54" 按字节数: # mysqlbinlog mysql.000002 --start-position=260 # mysqlbinlog mysql.000002 --stop-position=260 # mysqlbinlog mysql.000002 --start-position=260 --stop-position=930 4. 截断bin-log(产生新的bin-log文件) a. 重启mysql服务器 b. # mysql -uroot -p123 -e 'flush logs' 5. 删除bin-log文件 # mysql -uroot -p123 -e 'reset master' 2、查询日志 启用通用查询日志 # vim /etc/my.cnf [mysqld] log[=dir\[filename]] # service mysqld restart 3、慢查询日志 启用慢查询日志 # vim /etc/my.cnf [mysqld] log-slow-queries[=dir\[filename]] long_query_time=n # service mysqld restart MySQL 5.6: slow-query-log=1 slow-query-log-file=slow.log long_query_time=3 单位为秒 查看慢查询日志 测试:BENCHMARK(count,expr) SELECT BENCHMARK(50000000,2*3);