分布式系统缓存系列之guava cache

    guava是google的一个开源java框架,其github地址是 https://github.com/google/guava。guava工程包含了若干被Google的 Java项目普遍依赖的核心库,例如:集合 [collections] 、缓存 [caching] 、原生类型支持 [primitives support] 、并发库 [concurrency libraries] 、通用注解 [common annotations] 、字符串处理 [string processing] 、I/O 等等。 全部这些工具天天都在被Google的工程师应用在产品服务中。 其中caching这一块是我经常使用的模块的之一,今天就来分享一下我对guava cache的一些看法。html

 

   guava cache使用简介java

     guava cache 是利用CacheBuilder类用builder模式构造出两种不一样的cache加载方式CacheLoader,Callable,共同逻辑都是根据key是加载value。不一样的地方在于CacheLoader的定义比较宽泛,是针对整个cache定义的,能够认为是统一的根据key值load value的方法,而Callable的方式较为灵活,容许你在get的时候指定load方法。看如下代码git

Cache<String,Object> cache = CacheBuilder.newBuilder()
                .expireAfterWrite(10, TimeUnit.SECONDS).maximumSize(500).build();

         cache.get("key", new Callable<Object>() { //Callable 加载
            @Override
            public Object call() throws Exception {
                return "value";
            }
        });

        LoadingCache<String, Object> loadingCache = CacheBuilder.newBuilder()
                .expireAfterAccess(30, TimeUnit.SECONDS).maximumSize(5)
                .build(new CacheLoader<String, Object>() {
                    @Override
                    public Object load(String key) throws Exception {
                        return "value";
                    }
                });

 

    这里面有几个参数expireAfterWrite、expireAfterAccess、maximumSize其实这几个定义的都是过时策略。expireAfterWrite适用于一段时间cache可能会发先变化场景。expireAfterAccess是包括expireAfterWrite在内的,由于read和write操做都被定义的access操做。另外expireAfterAccess,expireAfterAccess都是受到maximumSize的限制。当缓存的数量超过了maximumSize时,guava cache会要据LRU算法淘汰掉最近没有写入或访问的数据。这里的maximumSize指的是缓存的个数并非缓存占据内存的大小。 若是想限制缓存占据内存的大小能够配置maximumWeight参数。github

      看代码:redis

  CacheBuilder.newBuilder().weigher(new Weigher<String, Object>() {

              @Override
              public int weigh(String key, Object value) {
                  return 0;  //the value.size()
              }
          }).expireAfterWrite(10, TimeUnit.SECONDS).maximumWeight(500).build();

   weigher返回每一个cache value占据内存的大小,这个大小是由使用者自身定义的,而且put进内存时就已经肯定后面就再不会发生变更。maximumWeight定义了全部cache value加起的weigher的总和不能超过的上限。算法

    注意一点就是maximumWeight与maximumSize二者只能生效一个是不能同时使用的!api

 

   guava cache的设计数组

    guava cache做为一个被普遍使用的缓存组件,设计上它有哪些过人之处?缓存

    先看下cache的类实现定义安全

class LocalCache<K, V> extends AbstractMap<K, V> implements ConcurrentMap<K, V> {....} 

    咱们看到了ConcurrentMap,因此咱们知道了一点guava cache基于ConcurrentHashMap的基础上设计。因此ConcurrentHashMap的优势它也具有。既然实现了      ConcurrentMap那再看下guava cache中的Segment的实现是怎样?

 

   咱们看到guava cache 中的Segment本质是一个ReentrantLock。内部定义了table,wirteQueue,accessQueue定义属性。其中table是一个ReferenceEntry原子类数组,里面就存放了cache的内容。wirteQueue存放的是对table的写记录,accessQueue是访问记录。guava cache的expireAfterWrite,expireAfterAccess就是借助这个两个queue来实现的。

  了解了guava cache的大概存储结构,下面看经过对cache的操做来进行更深刻的了解。

   put(key,val)操做。

  public V put(K key, V value) {
    checkNotNull(key);
    checkNotNull(value);
    int hash = hash(key);
    return segmentFor(hash).put(key, hash, value, false);
  }

  设置缓存大概的过程:根据key 哈希到对应的segment,而后对segment加锁lock(),而后获取segment.table对应的结点

int index = hash & (table.length() - 1);
ReferenceEntry<K, V> first = table.get(index);

  以后入队的过程和hashMap的入队过程相似。入队完以后还会进行相关操做好比更新accessQueue和wiriteQueue,累加totalWeight

 void recordWrite(ReferenceEntry<K, V> entry, int weight, long now) {
      // we are already under lock, so drain the recency queue immediately
      drainRecencyQueue();
      totalWeight += weight;

      if (map.recordsAccess()) {
        entry.setAccessTime(now);
      }
      if (map.recordsWrite()) {
        entry.setWriteTime(now);
      }
      accessQueue.add(entry);
      writeQueue.add(entry);
    }

  get(key)操做 。

     第一步也是先定位到所在segment

V get(K key, CacheLoader<? super K, V> loader) throws ExecutionException {
    int hash = hash(checkNotNull(key));
    return segmentFor(hash).get(key, hash, loader);
  }

   判断key对应的ReferenceEntry存在

  ReferenceEntry<K, V> e = getEntry(key, hash);
          if (e != null) {
            long now = map.ticker.read();
            V value = getLiveValue(e, now);
            if (value != null) {
              recordRead(e, now);
              statsCounter.recordHits(1);
              return scheduleRefresh(e, key, hash, value, now, loader);
            }
            ValueReference<K, V> valueReference = e.getValueReference();
            if (valueReference.isLoading()) {
              return waitForLoadingValue(e, key, valueReference);
            }
          
getLiveValue(e, now)若是返回了null就表示当前cache已通过期了,不为null时recordRead(e, now)记录最新访问时间为now,而后统计命中率。scheduleRefresh(e, key, hash, value, now, loader)至关于一个双重检查,再次检查cache需不须要刷新,若是须要刷新看不看不能立刻拿到新值。
若是能够返回新值,否直接拿原值返回。
这时注意valueReference.isLoading()为true的时候就表示有其它线程正在更新该cache,其它全部线程都要wait到这个线程loading完
才能返回。

key对应的ReferenceEntry不存在:缓存没有加载进来或者已经被remove掉。
      return lockedGetOrLoad(key, hash, loader);

  lockedGetOrLoad执行逻辑是先加锁lock(),判断当前是否有其它线程在loading该cache,若是有等待其加载完毕而后返回。否本身执行loader把值设进cache中而后返回。   

try {
          // Synchronizes on the entry to allow failing fast when a recursive load is
          // detected. This may be circumvented when an entry is copied, but will fail fast most
          // of the time.
          synchronized (e) {
            return loadSync(key, hash, loadingValueReference, loader);
          }
        } finally {
          statsCounter.recordMisses(1);
        }

  

    guava cache的淘汰策略

     guava cache整体来讲有四种淘汰策略。

     一、size-based 基本于使用量。

      当缓存个数超过CacheBuilder.maximumSize(long)设置的值时,优先淘汰最近没有使用或者不经常使用的元素。同理CacheBuilder.maximumWeight(long)也是同样逻辑。

     二、timed eviction 基于时间驱逐。

       expireAfterAccess(long, TimeUnit)仅在指定上一次读/更新操做过了指定持续时间以后才考虑淘汰,淘汰逻辑与size-based是相似的。优先淘汰最近没有使用或者不经常使用的元素

     expireAfterWrite(long, TimeUnit) 仅在指定上一次写/更新操做过了指定持续时间以后才考虑淘汰,淘汰逻辑与size-based是相似的。优先淘汰最近没有使用或者不经常使用的元素

    三、Reference-based Eviction 基本于引用驱逐

        在JDK1.2以后,Java对引用的概念进行了扩充,将引用分为强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Refernce)、虚引用(Phantom Reference)。四种引用强度依次减弱。这四种引用除了强引用(Strong Reference)以外,其它的引用所对应的对象来JVM进行GC时都是能够确保被回收的。因此经过使用弱引用的键、或弱引用的值、或软引用的值,Guava Cache能够把缓存设置为容许垃圾回收:

  • CacheBuilder.weakKeys():使用弱引用存储键。当键没有其它(强或软)引用时,缓存项能够被垃圾回收。由于垃圾回收仅依赖恒等式(==),使用弱引用键的缓存用==而不是equals比较键。
  • CacheBuilder.weakValues():使用弱引用存储值。当值没有其它(强或软)引用时,缓存项能够被垃圾回收。由于垃圾回收仅依赖恒等式(==),使用弱引用值的缓存用==而不是equals比较值。
  • CacheBuilder.softValues():使用软引用存储值。软引用只有在响应内存须要时,才按照全局最近最少使用的顺序回收。考虑到使用软引用的性能影响,咱们一般建议使用更有性能预测性的缓存大小限定(使用软引用值的缓存一样用==而不是equals比较值)

        这样的好处就是当内存资源紧张时能够释放掉到缓存的内存。注意!CacheBuilder若是没有指明默认是强引用的,GC时若是没有元素到达指定的过时时间,内存是不能被回收的。

   四、显示删除

   任什么时候候,你均可以显式地清除缓存项,而不是等到它被回收:

       提一下guava cache 是怎么触发元素回收的。guava的元素回收与其它的一些框架不同好比redis,redis是起额外的线程去回收元素。而guava是进行get,put操做的时候顺便把元素回收的。这样比通常的缓存另起线程监控清理相比,能够减小开销,但若是长时间没有调用方法的话,会致使不能及时的清理释放内存空间的问题。回收时主要处理四个Queue:1. keyReferenceQueue;2. valueReferenceQueue;3. writeQueue;4. accessQueue。前两个queue是由于WeakReference、SoftReference被垃圾回收时加入的,清理时只须要遍历整个queue,将对应的项从LocalCache中移除便可,这里keyReferenceQueue存放ReferenceEntry,而valueReferenceQueue存放的是ValueReference。而对后面两个Queue,只须要检查是否配置了相应的expire时间,而后从头开始查找已经expire的Entry,将它们移除便可。

     总的来讲,guava cache基于ConcurrentHashMap的优秀设计借鉴,在高并发场景支持线程安全,使用Reference引用命令,保证了GC的可回收到相应的数据,有效节省空间;同时write链和access链的设计,能更灵活、高效的实现多种类型的缓存清理策略,包括基于容量的清理、基于时间的清理、基于引用的清理等;

相关文章
相关标签/搜索