花下猫语:在 Python 中,不一样类型的数字能够直接作算术运算,并不须要做显式的类型转换。可是,它的“隐式类型转换”可能跟其它语言不一样,由于 Python 中的数字是一种特殊的对象,派生自同一个抽象基类。在上一篇文章 中,咱们讨论到了 Python 数字的运算,而后我想探究“Python 的数字对象究竟是什么”的话题,因此就翻译了这篇 PEP,但愿对你也有所帮助。html
PEP原文: https://www.python.org/dev/peps/pep-3141/python
PEP标题: PEP 3141 -- A Type Hierarchy for Numbersgit
PEP做者: Jeffrey Yasskingithub
建立日期: 2007-04-23ide
译者 :豌豆花下猫@Python猫公众号函数
PEP翻译计划: https://github.com/chinesehuazhou/peps-cnui
本提案定义了一种抽象基类(ABC)(PEP 3119)的层次结构,用来表示相似数字(number-like)的类。它提出了一个 Number :> Complex :> Real :> Rational :> Integral 的层次结构,其中 A :> B 表示“A 是 B 的超类”。该层次结构受到了 Scheme 的数字塔(numeric tower)启发。(译注:数字--复数--实数--有理数--整数)this
以数字做为参数的函数应该可以断定这些数字的属性,而且根据数字的类型,肯定是否以及什么时候进行重载,即基于参数的类型,函数应该是可重载的。翻译
例如,切片要求其参数为Integrals
,而math
模块中的函数要求其参数为Real
。code
本 PEP 规定了一组抽象基类(Abstract Base Class),并提出了一个实现某些方法的通用策略。它使用了来自于PEP 3119的术语,可是该层次结构旨在对特定类集的任何系统方法都有意义。
标准库中的类型检查应该使用这些类,而不是具体的内置类型。
咱们从 Number 类开始,它是人们想象的数字类型的模糊概念。此类仅用于重载;它不提供任何操做。
class Number(metaclass=ABCMeta): pass
大多数复数(complex number)的实现都是可散列的,可是若是你须要依赖它,则必须明确地检查:此层次结构支持可变的数。
class Complex(Number): """Complex defines the operations that work on the builtin complex type. In short, those are: conversion to complex, bool(), .real, .imag, +, -, *, /, **, abs(), .conjugate(), ==, and !=. If it is given heterogenous arguments, and doesn't have special knowledge about them, it should fall back to the builtin complex type as described below. """ @abstractmethod def __complex__(self): """Return a builtin complex instance.""" def __bool__(self): """True if self != 0.""" return self != 0 @abstractproperty def real(self): """Retrieve the real component of this number. This should subclass Real. """ raise NotImplementedError @abstractproperty def imag(self): """Retrieve the real component of this number. This should subclass Real. """ raise NotImplementedError @abstractmethod def __add__(self, other): raise NotImplementedError @abstractmethod def __radd__(self, other): raise NotImplementedError @abstractmethod def __neg__(self): raise NotImplementedError def __pos__(self): """Coerces self to whatever class defines the method.""" raise NotImplementedError def __sub__(self, other): return self + -other def __rsub__(self, other): return -self + other @abstractmethod def __mul__(self, other): raise NotImplementedError @abstractmethod def __rmul__(self, other): raise NotImplementedError @abstractmethod def __div__(self, other): """a/b; should promote to float or complex when necessary.""" raise NotImplementedError @abstractmethod def __rdiv__(self, other): raise NotImplementedError @abstractmethod def __pow__(self, exponent): """a**b; should promote to float or complex when necessary.""" raise NotImplementedError @abstractmethod def __rpow__(self, base): raise NotImplementedError @abstractmethod def __abs__(self): """Returns the Real distance from 0.""" raise NotImplementedError @abstractmethod def conjugate(self): """(x+y*i).conjugate() returns (x-y*i).""" raise NotImplementedError @abstractmethod def __eq__(self, other): raise NotImplementedError # __ne__ is inherited from object and negates whatever __eq__ does.
Real
抽象基类表示在实数轴上的值,而且支持内置的float
的操做。实数(Real number)是彻底有序的,除了 NaN(本 PEP 基本上不考虑它)。
class Real(Complex): """To Complex, Real adds the operations that work on real numbers. In short, those are: conversion to float, trunc(), math.floor(), math.ceil(), round(), divmod(), //, %, <, <=, >, and >=. Real also provides defaults for some of the derived operations. """ # XXX What to do about the __int__ implementation that's # currently present on float? Get rid of it? @abstractmethod def __float__(self): """Any Real can be converted to a native float object.""" raise NotImplementedError @abstractmethod def __trunc__(self): """Truncates self to an Integral. Returns an Integral i such that: * i>=0 iff self>0; * abs(i) <= abs(self); * for any Integral j satisfying the first two conditions, abs(i) >= abs(j) [i.e. i has "maximal" abs among those]. i.e. "truncate towards 0". """ raise NotImplementedError @abstractmethod def __floor__(self): """Finds the greatest Integral <= self.""" raise NotImplementedError @abstractmethod def __ceil__(self): """Finds the least Integral >= self.""" raise NotImplementedError @abstractmethod def __round__(self, ndigits:Integral=None): """Rounds self to ndigits decimal places, defaulting to 0. If ndigits is omitted or None, returns an Integral, otherwise returns a Real, preferably of the same type as self. Types may choose which direction to round half. For example, float rounds half toward even. """ raise NotImplementedError def __divmod__(self, other): """The pair (self // other, self % other). Sometimes this can be computed faster than the pair of operations. """ return (self // other, self % other) def __rdivmod__(self, other): """The pair (self // other, self % other). Sometimes this can be computed faster than the pair of operations. """ return (other // self, other % self) @abstractmethod def __floordiv__(self, other): """The floor() of self/other. Integral.""" raise NotImplementedError @abstractmethod def __rfloordiv__(self, other): """The floor() of other/self.""" raise NotImplementedError @abstractmethod def __mod__(self, other): """self % other See https://mail.python.org/pipermail/python-3000/2006-May/001735.html and consider using "self/other - trunc(self/other)" instead if you're worried about round-off errors. """ raise NotImplementedError @abstractmethod def __rmod__(self, other): """other % self""" raise NotImplementedError @abstractmethod def __lt__(self, other): """< on Reals defines a total ordering, except perhaps for NaN.""" raise NotImplementedError @abstractmethod def __le__(self, other): raise NotImplementedError # __gt__ and __ge__ are automatically done by reversing the arguments. # (But __le__ is not computed as the opposite of __gt__!) # Concrete implementations of Complex abstract methods. # Subclasses may override these, but don't have to. def __complex__(self): return complex(float(self)) @property def real(self): return +self @property def imag(self): return 0 def conjugate(self): """Conjugate is a no-op for Reals.""" return +self
咱们应该整理 Demo/classes/Rat.py,并把它提高为 Rational.py 加入标准库。而后它将实现有理数(Rational)抽象基类。
class Rational(Real, Exact): """.numerator and .denominator should be in lowest terms.""" @abstractproperty def numerator(self): raise NotImplementedError @abstractproperty def denominator(self): raise NotImplementedError # Concrete implementation of Real's conversion to float. # (This invokes Integer.__div__().) def __float__(self): return self.numerator / self.denominator
最后是整数类:
class Integral(Rational): """Integral adds a conversion to int and the bit-string operations.""" @abstractmethod def __int__(self): raise NotImplementedError def __index__(self): """__index__() exists because float has __int__().""" return int(self) def __lshift__(self, other): return int(self) << int(other) def __rlshift__(self, other): return int(other) << int(self) def __rshift__(self, other): return int(self) >> int(other) def __rrshift__(self, other): return int(other) >> int(self) def __and__(self, other): return int(self) & int(other) def __rand__(self, other): return int(other) & int(self) def __xor__(self, other): return int(self) ^ int(other) def __rxor__(self, other): return int(other) ^ int(self) def __or__(self, other): return int(self) | int(other) def __ror__(self, other): return int(other) | int(self) def __invert__(self): return ~int(self) # Concrete implementations of Rational and Real abstract methods. def __float__(self): """float(self) == float(int(self))""" return float(int(self)) @property def numerator(self): """Integers are their own numerators.""" return +self @property def denominator(self): """Integers have a denominator of 1.""" return 1
为了支持从 float 到 int(确切地说,从 Real 到 Integral)的精度收缩,咱们提出了如下新的 __magic__ 方法,能够从相应的库函数中调用。全部这些方法都返回 Intergral 而不是 Real。
在 2.6 版本中,math.floor、math.ceil 和 round 将继续返回浮点数。
float 的 int() 转换等效于 trunc()。通常而言,int() 的转换首先会尝试__int__(),若是找不到,再尝试__trunc__()。
complex.__{divmod, mod, floordiv, int, float}__ 也消失了。提供一个好的错误消息来帮助困惑的搬运工会很好,但更重要的是不出如今 help(complex) 中。
实现者应该注意使相等的数字相等,并将它们散列为相同的值。若是实数有两个不一样的扩展,这可能会变得微妙。例如,一个复数类型能够像这样合理地实现 hash():
def __hash__(self): return hash(complex(self))
但应注意全部超出了内置复数范围或精度的值。
固然,数字还可能有更多的抽象基类,若是排除了添加这些数字的可能性,这会是一个糟糕的等级体系。你可使用如下方法在 Complex 和 Real 之间添加MyFoo:
class MyFoo(Complex): ... MyFoo.register(Real)
咱们但愿实现算术运算,使得在混合模式的运算时,要么调用者知道如何处理两种参数类型,要么将二者都转换为最接近的内置类型,并以此进行操做。
对于 Integral 的子类型,这意味着__add__和__radd__应该被定义为:
class MyIntegral(Integral): def __add__(self, other): if isinstance(other, MyIntegral): return do_my_adding_stuff(self, other) elif isinstance(other, OtherTypeIKnowAbout): return do_my_other_adding_stuff(self, other) else: return NotImplemented def __radd__(self, other): if isinstance(other, MyIntegral): return do_my_adding_stuff(other, self) elif isinstance(other, OtherTypeIKnowAbout): return do_my_other_adding_stuff(other, self) elif isinstance(other, Integral): return int(other) + int(self) elif isinstance(other, Real): return float(other) + float(self) elif isinstance(other, Complex): return complex(other) + complex(self) else: return NotImplemented
对 Complex 的子类进行混合类型操做有 5 种不一样的状况。我把以上全部未包含 MyIntegral 和 OtherTypeIKnowAbout 的代码称为“样板”。
a 是 A 的实例,它是Complex(a : A <: Complex)
的子类型,还有 b : B <: Complex
。对于 a + b,我这么考虑:
若是 A <: Complex 和 B <: Real 没有其它关系,则合适的共享操做是内置复数的操做,它们的__radd__都在其中,所以 a + b == b + a。(译注:这几段没看太明白,可能译得不对)
本 PEP 的初始版本定义了一个被 Haskell Numeric Prelude 所启发的代数层次结构,其中包括 MonoidUnderPlus、AdditiveGroup、Ring 和 Field,并在获得数字以前,还有其它几种可能的代数类型。
咱们本来但愿这对使用向量和矩阵的人有用,但 NumPy 社区确实对此并不感兴趣,另外咱们还遇到了一个问题,即使 x 是 X <: MonoidUnderPlus 的实例,并且 y 是 Y < : MonoidUnderPlus 的实例,x + y 可能仍是行不通。
而后,咱们为数字提供了更多的分支结构,包括高斯整数(Gaussian Integer)和 Z/nZ 之类的东西,它们能够是 Complex,但不必定支持“除”之类的操做。
社区认为这对 Python 来讲太复杂了,所以我如今缩小了提案的范围,使其更接近于 Scheme 数字塔。
经与做者协商,已决定目前不将 Decimal 类型做为数字塔的一部分。
一、抽象基类简介:http://www.python.org/dev/peps/pep-3119/
二、多是 Python 3 的类树?Bill Janssen 的 Wiki 页面:http://wiki.python.org/moin/AbstractBaseClasses
三、NumericPrelude:数字类型类的实验性备选层次结构:http://darcs.haskell.org/numericprelude/docs/html/index.html
四、Scheme 数字塔:https://groups.csail.mit.edu/mac/ftpdir/scheme-reports/r5rs-html/r5rs_8.html#SEC50
(译注:在译完以后,我才发现“PEP中文翻译计划”已收录过一篇译文,有些地方译得不尽相同,读者们可比对阅读。)
感谢 Neal Norwitz 最初鼓励我编写此 PEP,感谢 Travis Oliphant 指出 numpy 社区并不真正关心代数概念,感谢 Alan Isaac 提醒我 Scheme 已经作到了,以及感谢 Guido van Rossum 和邮件组里的其余人帮忙完善了这套概念。
该文档已放入公共领域。