图像分割论文 | DRN膨胀残差网络 | CVPR2017

文章转自:同做者我的微信公众号【机器学习炼丹术】。欢迎交流沟通,共同进步,做者微信:cyx645016617微信

0 综述

这篇文章的最大特点天然是提出了DRN,Dilated Residual Networks,在残差网络的基础上加入了膨胀卷积。网络

膨胀卷积,又叫作空洞卷积,是在卷积核参数不变的基础上,增长视野域的一种手段。经过使用膨胀卷积,能够放大最深层特征图的尺寸而且保持视野域大小不变,说白了就是少了几个池化层,而后用膨胀卷积维持一样大小的视野域。比方说,resnet众所周知,包括stem中的下采样和4个layer的下采样,5次下采样,总体的步长为32;可是DRN中,总体步长仅为8。机器学习

固然文章若是仅仅是把碰撞卷积代替通常卷积,那么这篇文章就毫无特点了。碰撞卷积会引出一个degridding效应,如何解决这个问题才是文章的核心。ide

再加上一句,虽然模型的参数没有改变,可是由于增长了特征图的尺寸,计算量和内存消耗必然有增长,请你们仁者见仁。学习

1 空洞卷积

这个长话短说,直接看图:
3d

dilation是一个参数,若是是1的话,就是上图左图的常规卷积核,若是dilation是2的画,就变成右边的膨胀卷积的样子。dilation表示卷积核中参数相邻的距离。blog

2 结构变化

先来看Resnet的结构图:
图片

输入的图片是224x224大小的,第一次下采样在stem中(图中的conv1),随后的下采样在每一层layer的第一个卷积层前面。内存

DRN结构没有了resnet最后的两次下采样,也就是说,特征图在28x28的大小以后就再也不变小了。再也不减少特征图尺寸,那么就要增长卷积核的膨胀系数get

上图中展现的是后两次下采样的resnet和DRN的区别,能够看到,DRN没有后两次下采样,所以特征图的尺寸都相同。

  • 可是DRN在本该第四次采样的卷积过程当中,将膨胀系数改为2,这样保持相同的视野域;
  • 在本该第五次采样的卷积过程当中,将膨胀系数改为4,这样保持相同的视野域。

3 degridding

使用膨胀卷积来代替下采样,会产生degriding栅格化问题

这种状况产生的缘由在原文中有这样的一句解释:

Gridding artifacts occur when a feature map has higher-frequency content than the sampling rate of the dilated convolution.

就是说,当一某一个特征的重要性超过采样率。做者给出了这样的一个例子:

上面图(a)是一个单个像素异常重要的特征图,而后通过一个膨胀卷积,变成(c),变成网格状的输出。能够说gridding artifiacts是膨胀卷积性质产生的现象。

为了解决这样的问题,做者对DRN做出了改进:

  1. DRN-B,DRN-C取消了pooling层,改用stride=2的卷积做为下采样,由于做者发现pooling会让degridding更加严重
  2. 此外,做者在DRN-B和DRN-C的最后加上了膨胀系数为2和1的几层卷积层,来消除degridding现象。其中DRN-C取消了最后几层卷积的跳层结构。这个很是好理解,毕竟膨胀卷积会产生degridding,那么我就让最后的输出是用通常的卷积输出就避免了这种结构,而后跳层结构会让degridding直接连入最后的输出结果,因此取消了

所以在上面的展现图汇中,DRN-C的输出的语义分割效果图,很是丝滑。

4 总结

效果有很是大的提升。这个不下降特征图的尺寸,从而提升了小物体的目标检测的效果。值得尝试。

5 如何实现

这个也挺好实现的,咱们记住:

  1. 用stride=2的卷积层代替pooling层;
  2. 后面两个下采样取消,使用膨胀系数2和4的卷积代替;
  3. 最后在加上膨胀系数为2和1的卷积层消除degridding现象。
相关文章
相关标签/搜索