golang手动管理内存

做者:John Graham-Cumming.   原文点击此处。翻译:Lubia Yang 程序员

前些天我介绍了咱们对Lua的使用,implement our new Web Application Firewallgolang

另外一种在CloudFlare (做者的公司)变得很是流行的语言是Golang。在过去,我写了一篇 how we use Go来介绍相似Railgun的网络服务的编写。 编程

用Golang这样带GC的语言编写长期运行的网络服务有一个很大的挑战,那就是内存管理。 数组

为了理解Golang的内存管理有必要对run-time源码进行深挖。有两个进程区分应用程序再也不使用的内存,当它们看起来不会再使用,就把它们归还到操做系统(在Golang源码里称为scavenging )。 安全

这里有一个简单的程序制造了大量的垃圾(garbage),每秒钟建立一个 5,000,000 到 10,000,000 bytes 的数组。程序维持了20个这样的数组,其余的则被丢弃。程序这样设计是为了模拟一种很是常见的状况:随着时间的推移,程序中的不一样部分申请了内存,有一些被保留,但大部分再也不重复使用。在Go语言网络编程中,用goroutines 来处理网络链接和网络请求时(network connections or requests),一般goroutines都会申请一块内存(好比slice来存储收到的数据)而后就再也不使用它们了。随着时间的推移,会有大量的内存被网络链接(network connections)使用,链接累积的垃圾come and gone。 网络

package main

import (  
    "fmt"  
    "math/rand"  
    "runtime"  
    "time"
)  

func makeBuffer() []byte {  
    return make([]byte, rand.Intn(5000000)+5000000)  
}

func main() {  
    pool := make([][]byte, 20)

    var m runtime.MemStats  
    makes := 0  
    for {  
        b := makeBuffer()
        makes += 1
        i := rand.Intn(len(pool))
        pool[i] = b

        time.Sleep(time.Second)

        bytes := 0

        for i := 0; i < len(pool); i++ {
            if pool[i] != nil {
                bytes += len(pool[i])
            }
        }

        runtime.ReadMemStats(&m)
        fmt.Printf("%d,%d,%d,%d,%d,%d\n", m.HeapSys, bytes, m.HeapAlloc,
            m.HeapIdle, m.HeapReleased, makes)
    }
}

程序使用 runtime.ReadMemStats函数来获取堆的使用信息。它打印了四个值, 函数

HeapSys:程序向应用程序申请的内存 oop

HeapAlloc:堆上目前分配的内存 lua

HeapIdle:堆上目前没有使用的内存 操作系统

HeapReleased:回收到操做系统的内存

GC在Golang中运行的很频繁(参见GOGC环境变量(GOGC environment variable )来理解怎样控制垃圾回收操做),所以在运行中因为一些内存被标记为”未使用“,堆上的内存大小会发生变化:这会致使HeapAlloc和HeapIdle发生变化。Golang中的scavenger 会释放那些超过5分钟仍然没有再使用的内存,所以HeapReleased不会常常变化。

下面这张图是上面的程序运行了10分钟之后的状况:

(在这张和后续的图中,左轴以是以byte为单位的内存大小,右轴是程序执行次数)

红线展现了pool中byte buffers的数量。20个 buffers 很快达到150,000,000 bytes。最上方的蓝色线表示程序从操做系统申请的内存。稳定在375,000,000 bytes。所以程序申请了2.5倍它所需的空间!

当GC发生时,HeapIdle和HeapAlloc发生跳变。橘色的线是makeBuffer()发送的次数。

这种过分的内存申请是有GC的程序的通病,参见这篇paper

Quantifying the Performance of Garbage Collection vs. Explicit Memory Management

程序不断执行,idle memory(即HeapIdle)会被重用,但不多归还到操做系统。


解决此问题的一个办法是在程序中手动进行内存管理。例如,

程序能够这样重写:

package main

import (
	"fmt"
	"math/rand"
	"runtime"
	"time"
)

func makeBuffer() []byte {
	return make([]byte, rand.Intn(5000000)+5000000)
}

func main() {
	pool := make([][]byte, 20)

	buffer := make(chan []byte, 5)

	var m runtime.MemStats
	makes := 0
	for {
		var b []byte
		select {
		case b = <-buffer:
		default:
			makes += 1
			b = makeBuffer()
		}

		i := rand.Intn(len(pool))
		if pool[i] != nil {
			select {
			case buffer <- pool[i]:
				pool[i] = nil
			default:
			}
		}

		pool[i] = b

		time.Sleep(time.Second)

		bytes := 0
		for i := 0; i < len(pool); i++ {
			if pool[i] != nil {
				bytes += len(pool[i])
			}
		}

		runtime.ReadMemStats(&m)
		fmt.Printf("%d,%d,%d,%d,%d,%d\n", m.HeapSys, bytes, m.HeapAlloc,
			m.HeapIdle, m.HeapReleased, makes)
	}
}

下面这张图是上面的程序运行了10分钟之后的状况:

这张图展现了彻底不一样的状况。实际使用的buffer几乎等于从操做系统中申请的内存。同时GC几乎没有工做可作。堆上只有不多的HeapIdle最终须要归还到操做系统。

这段程序中内存回收机制的关键操做就是一个缓冲的channel ——buffer,在上面的代码中,buffer是一个能够存储5个[]byte slice的容器。当程序须要空间时,首先会使用select从buffer中读取:

select {

case b = <- buffer:

default :

makes += 1

b = makeBuffer()

}

这永远不会阻塞由于若是channel中有数据,就会被读出,若是channel是空的(意味着接收会阻塞),则会建立一个。

使用相似的非阻塞机制将slice回收到buffer:

select {

case buffer <- pool[i]:

pool[i] = nil

 default:

}

若是buffer 这个channel满了,则以上的写入过程会阻塞,这种状况下default触发。这种简单的机制能够用于安全的建立一个共享池,甚至可经过channel传递实现多个goroutines之间的完美、安全共享。

在咱们的实际项目中运用了类似的技术,实际使用中(简单版本)的回收器(recycler )展现在下面,有一个goroutine 处理buffers的构造并在多个goroutine之间共享。get(获取一个新buffer)和give(回收一个buffer到pool)这两个channel被全部goroutines使用。

回收器对收回的buffer保持链接,并按期的丢弃那些过于陈旧可能不会再使用的buffer(在示例代码中这个周期是一分钟)。这让程序能够自动应对爆发性的buffers需求。

package main

import (
    "container/list"
    "fmt"
    "math/rand"
    "runtime"
    "time"
)

var makes int
var frees int

func makeBuffer() []byte {
    makes += 1
    return make([]byte, rand.Intn(5000000)+5000000)
}

type queued struct {
    when time.Time
    slice []byte
}

func makeRecycler() (get, give chan []byte) {
    get = make(chan []byte)
    give = make(chan []byte)

    go func() {
        q := new(list.List)
        for {
            if q.Len() == 0 {
                q.PushFront(queued{when: time.Now(), slice: makeBuffer()})
            }

            e := q.Front()

            timeout := time.NewTimer(time.Minute)
            select {
            case b := <-give:
                timeout.Stop()
                q.PushFront(queued{when: time.Now(), slice: b})

           case get <- e.Value.(queued).slice:
               timeout.Stop()
               q.Remove(e)

           case <-timeout.C:
               e := q.Front()
               for e != nil {
                   n := e.Next()
                   if time.Since(e.Value.(queued).when) > time.Minute {
                       q.Remove(e)
                       e.Value = nil
                   }
                   e = n
               }
           }
       }

    }()

    return
}

func main() {
    pool := make([][]byte, 20)

    get, give := makeRecycler()

    var m runtime.MemStats
    for {
        b := <-get
        i := rand.Intn(len(pool))
        if pool[i] != nil {
            give <- pool[i]
        }

        pool[i] = b

        time.Sleep(time.Second)

        bytes := 0
        for i := 0; i < len(pool); i++ {
            if pool[i] != nil {
                bytes += len(pool[i])
            }
        }

        runtime.ReadMemStats(&m)
        fmt.Printf("%d,%d,%d,%d,%d,%d,%d\n", m.HeapSys, bytes, m.HeapAlloc
             m.HeapIdle, m.HeapReleased, makes, frees)
    }
}

执行程序10分钟,图像会相似于第二幅:

这些技术能够用于程序员知道某些内存能够被重用,而不用借助于GC,能够显著的减小程序的内存使用,同时可使用在其余数据类型而不只是[]byte slice,任意类型的Go type(用户定义的或许不行(user-defined or not))均可以用相似的手段回收。

相关文章
相关标签/搜索