学习推荐系统必看的10篇RecSys论文,收藏!(官方推荐)

先荐导读:深刻学习任何一门学科,都离不开对前沿知识的了解。对于推荐系统学习者来讲,一年一度的RecSys大会就是了解学术界与工业界研究热点的最佳平台。鉴于此,在这篇文章中,咱们把过往的RecSys论文整理成一个清单,列出了你们学习推荐系统必看的10篇RecSys论文。

下边这5篇是根据ACM数字图书馆中的阅读量整理出来的。在已发表的925篇论文中,这五篇论文是阅读量最高的。这五篇论文约占全部RecSys会议论文引用的12%!微信

· Performance of recommender algorithms on top-n recommendation tasks — 2010, by Paolo Cremonesi, Yehuda Koren, Roberto Turrin网络

· Trust-aware recommender systems — 2007, by Paolo Massa, Paolo Avesaniapp

· A matrix factorization technique with trust propagation for recommendation in social networks — 2010, by Mohsen Jamali, Martin Ester运维

· Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering — 2010, by Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, Nuria Oliverpost

· Hidden factors and hidden topics: understanding rating dimensions with review text — 2013, by Julian McAuley, Jure Leskovec学习

自从2009年以来,每年的ACM RecSys大会还会为当年做出较大贡献的论文进行颁奖,接下来的5篇论文在近5年内被评为了“最佳论文”。ui

· Modeling the Assimilation-Contrast Effects in Online Product Rating Systems: Debiasing and Recommendations — 2017, by X. Zhang, J. Zhao, J.C.S. Lui人工智能

· Local Item-Item Models for Top-N Recommendation — 2016, by E. Christakopoulou and G. Karypisspa

· Context-Aware Event Recommendation in Event-based Social Networks— 2015, by A. Macedo, L. Marinho and R. Santos3d

· Beyond Clicks: Dwell Time for Personalization — 2014, by X. Yi, L. Hong, E. Zhong, N. Nan Liu and S. Rajan

· A Fast Parallel SGD for Matrix Factorization in Shared Memory Systems— 2013, by Y. Zhuang, W. Chin, Y. Juan and C. Lin (Best Paper)


如欲申请产品试用,欢迎添加先荐小助手微信号(ID:recsysfc)

本帐号为第四范式智能推荐产品先荐的官方帐号。帐号立足于计算机领域,特别是人工智能相关的前沿研究,旨在把更多与人工智能相关的知识分享给公众,从专业的角度促进公众对人工智能的理解;同时也但愿为人工智能相关人员提供一个讨论、交流、学习的开放平台,从而早日让每一个人都享受到人工智能创造的价值。

相关文章
相关标签/搜索