《一堂课掌握 AI 自学路径图》分享笔记

1.前言

在上周六,看了掘金的课堂。此次的课堂和以前的不同,由于此次涉及的领域是人工智能,讲的内容也是如何自学人工智能(AI)。这个主题,领域对于我本身而言,是一个关注可是陌生的主题,不一样所从事的前端。html

2.关于人工智能

在描述课堂以前,先大概介绍下人工智能的各方面。前端

2-1.什么是人工智能

引用百科的说法:人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。企图了解智能的实质,并生产出一种新的能以人类智能类似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、天然语言处理和专家系统等。web

2-2.为何要学人工智能

为何要学人工智能,这个可能不少人都想着,人工智能人才短缺,待遇高。这样想是对的,由于如今的状况就是如此。但每个行业的总会有一个风口期,红利期,这个不会一直存在。并且若是本身没兴趣,不肯接受挑战,就奔着高薪而学,注定走不远。因此,我不从这个角度解释这个为何。算法

我关注人工智能的理由就是由于人工智能就是一个趋势,前景也广阔,在之后也会逐渐的渗透到各行各业里面,影响咱们生活的各个方面。因此就以为人工智能值得学习。后端

也顺便扩展一下:我了解的人工智能如今有哪些应用领域了架构

领域 具体应用
在计算机视觉 车牌识别,图像识别,人脸识别,人脸美颜,无人车
情景智能 导航最佳路线,用户行为推荐
语音技术 语音识别,精确翻译,智能助手(说一段话,计算机完成一个任务)
生产,制造业 自动化车间,智能农业

3.关于课堂

3-1.主题

一堂课掌握 AI 自学路径图机器学习

3-2.了解目标

AI 如何改变咱们的生活?ide

AI 在七牛云的应用?学习

学习 AI 须要哪些基础知识?大数据

参与 AI 相关的工做须要哪些知识?

AI 相关岗位的平常工做是什么?

如何自学 AI

相关资源

4.AI技术革新

首先,第一个课时是彭垚老师带来的《AI技术革新》讲述的内容分为如下三大块吧。

4-1.AI若是改变咱们的生活

关于人工智能改变生活,主要有三大块,计算机视觉,语言识别,语音识别,具体的产品这里就不列举了。

计算机视觉方面的应用,好比导航的车辆识别,人脸识别,行为分析。

语音识别方面,好比智能机器人,智能音响。

语言处理方面,在线客服,我的助理,只能问答。

这一些领域都有不少出色的产品出现,在这里就不列举了。可是不能否认的就是,由于这些领域的产品出现,给咱们生活的衣食住行都有很大方面的改善。

4-2.AI在七牛云的应用

老师介绍到,七牛云围绕海量数据提供创新,灵活的组合场景,把AI融合进七牛运的产品线里面去。同时加力发展视频智能和数据智能的探索和应用。其中视频智能里面,包括内容审核(对色情,暴恐等视频进行处理,保证视频内容健康),人脸识别(身份核验,智能安防等),视频分析等,在数据智能里面,包括数据分析决策,理解机器语言和情绪,洞察将来等。

除此以外,也介绍了七牛云的人工智能实验室的核心创新体系。介绍了运用AI实现内容审核(对色情,暴恐等视频图像进行处理,保证内容健康),城市之眼(对人,物,场景进行检测,实现身份核验,智能安防等需求),媒资智能(对视频图像等实现人脸识别,实现人工检索等需求),创新计划。也介绍了当中的技术架构,运做原理,以及一些成功案例(陌陌,步步高,美图秀秀等)。

4-3.七牛云的AI工程师的平常

首先,AI工程师有7种,计算机视觉算法工程师,机器学习平台研发工程师,大数据平台研发工程,搜索引擎研发工程师,系统架构工程师,业务架构工程师。这几个职位字面上知道是负责什么,虽然我都不会。老师在课上简单介绍了他们的工做内容,成果方面包括AVA弹性深度学习平台,LEGO大数据富媒体知识库,AI Video OS等。

4-4.问题回顾

由于打字速度跟不上说话速度,内容也过多,用我本身的意思表达又担忧表达错误(其实就是由于懒),因此答案就不写了,须要知道答案的,请点击下面的连接,观看视频。

1.七牛云AI的核心技术能力是什么?

2.将机器学习与社会可与研究相结合,有哪些可能的基于和挑战?

3.不少关于人工智能的文章说,中国在人中只能领域处于领先位置,可为何在学习过程当中找到额度资料都是国外的?

4.系统架构和业务架构有什么不一样?

5.能够简介一下AI开发的流程吗?

6.这个AI Video OS是用在什么应用场景的呢?是对外提供服务能力,仍是对内使用?

最后,由于这个只是我一个简单的笔记介绍,若是你们想了解更多,仍是得点击下面连接进行观看:

www.bilibili.com/video/av231…

5.AI初学者入门

而后,第二个课时是邵杰老师带来的《AI初学者入门》。关于这个课时,并非讲了AI的全部应用领域,挑了两个应用很广的两个领域:机器学习和计算机视觉。

5-1.课程内容

开始以前,提了三个建议:

1.不要等到掌握全部的相关数学知识再开始 2.不要收集过多的学习资料 3.动手,动手,动手

关于第一个建议,老师目的就是想说,由于知识太多,难以所有掌握,会影响信心,并且不少知识不必定要求特别熟悉,想你们尽快的进入学习人工智能里面去。这也的确,不止AI,前端也有这样的状况,就是有人评估作前端仍是后台的时候,就是评估前端要学什么,后端要学什么,这样就感受有点想太多了。

关于第二个建议,老师以为网上资料繁杂,质量难以保证,也不系统,收集过多的资料,时间成本太大。

关于第三个建议,这个应用是通用的,即便是我本身写文章,我也很是建议,也屡次提到你们除了看,更要写,这样才能印象深入。若是只看不写,学的过程很容易懵。

机器学习:利用学习算法,从数据中产生模型。简单的说就是根据写的程序(机器算法),根据大量的数据,产生一个模型。讲师也讲了一个实例:好比常常会收到垃圾邮件,下次在收到的时候,根据已收到的垃圾邮件进行分析,判断是否是垃圾邮件。

机器学习:泛化性(根据已有的数据,分析新数据),算法偏好(不一样的模型,问题,应用匹配不一样的算法)

关于机器学起,也用了K近邻的方式实现一个图像识别。可是学习以前,你们要学习下相关的数学知识。

5-2.问题回顾

仍是同样,只有问题,答案看视频。

1.建不建议从深度学习开始入手学习?

2.phtroch和TensorFlow两个机器学库,选择哪一个学习比较好?

3.动手很重要,具体应该怎么实践?

4.AI开发选用什么变成语言比较合适?

5.请问老师,对于传统软件开发行业(c语言),行行人工智能行业(机器学习方向)有什么建议?

6.老师对于在线的机器学习的课程怎么看,例如coursera等等麻烦说说

视频连接:

www.bilibili.com/video/av231…

5-3.学习资料

附视频说起的学习资料:

书籍

尼克《人工智能简史》(这本书要认清做者,由于老师提到,《人工智能简史》有两本同名书籍,推荐的是尼克这本)

Miroslav Kubat《机器学习导论》

周志华《机器学习》(西瓜书)

Aurelien Geron《 Hands-on Machine Learning with Scikit-learn & Tensorflow 》

Ian Goodfellow等《Deep Learning》(花书)

ML 101

Getting Started With MachineLearning (all in one) by 梁劲 sina.lt/f3W8

Machine learning 101 by Jason Mayes sina.lt/f3W3

在线课程

机器学习速成课程 developers.google.com/machine-lea…

台湾大学李宏毅教授 speech.ee.ntu.edu.tw/~tlkagk/cou…

吴恩达教授 mooc.study.163.com/smartSpec/d…

斯坦福大学 cs231n cs231n.stanford.edu/

斯坦福大学 cs224n web.stanford.edu/class/cs224…

其余

scikit-learn Tutorials scikit-learn.org/stable/tuto…

机器学习术语表 developers.google.com/machine-lea…

4.小结

此次课堂的我的理解就差很少就到这里了。但这个课堂可让你们对AI开发有一个大概的了解,知道AI能够作什么,怎么作。以及AI自学的一个指导,至因而否受用,这个就见仁见智了。

最后感谢掘金和两个讲师给你们带来课程。

相关文章
相关标签/搜索