【论文总结】weakly- and semi-supervised learning of a DCNN for semantic Image Segmentation

一、概述       这篇文章研究了如何从弱注释的训练数据(如边界框或图像级标签)或少量强标记图像和许多弱标记图像的组合中学习DCNN用于语义图像分割的问题,在弱超监督和半监督条件下提出了期望最大化(EM)方法。 代码:https://bitbucket.org/deeplab/deeplab-public(caffe框架) 二、研究内容及方法       文章将焦点放在用弱标签训练调参上,所以训
相关文章
相关标签/搜索