HBase 优化

第 7 章HBase 优化

7.1 高可用

在 HBase 中 Hmaster 负责监控 RegionServer 的生命周期,均衡 RegionServer 的负载,如
果 Hmaster 挂掉了,那么整个 HBase 集群将陷入不健康的状态,而且此时的工做状态并不
会维持过久。因此 HBase 支持对 Hmaster 的高可用配置。
 

1.关闭 HBase 集群(若是没有开启则跳过此步)

[lxl@hadoop102 hbase]$ bin/stop-hbase.sh

 

2.在 conf 目录下建立 backup-masters 文件

[lxl@hadoop102 hbase]$ touch conf/backup-masters

 

3.在 backup-masters 文件中配置高可用 HMaster 节点

[lxl@hadoop102 hbase]$ echo hadoop103 > conf/backup-masters

 

4.将整个 conf 目录 scp 到其余节点

[atguigu@hadoop102 hbase]$ scp -r conf/ hadoop103:/opt/module/hbase/
[atguigu@hadoop102 hbase]$ scp -r conf/ hadoop104:/opt/module/hbase/

 

或者使用分发文件的脚本:
[lxl@hadoop102 hbase]$ xsync conf/backup-masters 

 

5.启动hbase: 

[lxl@hadoop102 hbase]$ bin/start-hbase.sh

starting master, logging to /opt/module/hbase/logs/hbase-lxl-master-hadoop102.out
hadoop102: starting regionserver, logging to /opt/module/hbase/bin/../logs/hbase-lxl-regionserver-hadoop102.out
hadoop104: starting regionserver, logging to /opt/module/hbase/bin/../logs/hbase-lxl-regionserver-hadoop104.out
hadoop103: starting regionserver, logging to /opt/module/hbase/bin/../logs/hbase-lxl-regionserver-hadoop103.out
hadoop103: starting master, logging to /opt/module/hbase/bin/../logs/hbase-lxl-master-hadoop103.out
[lxl@hadoop102 hbase]$ util.sh
================ lxl@hadoop102 ================
13040 HMaster
2868 NodeManager
2949 JobHistoryServer
13190 HRegionServer
3115 QuorumPeerMain
2460 NameNode
13535 Jps
2575 DataNode
================ lxl@hadoop103 ================
8562 Jps
8307 HMaster
2868 QuorumPeerMain
8229 HRegionServer
2407 ResourceManager
2268 DataNode
2525 NodeManager
================ lxl@hadoop104 ================
2384 SecondaryNameNode
8864 Jps
2484 NodeManager
8676 HRegionServer
2646 QuorumPeerMain
2279 DataNodenode

 

 

 

6.打开页面测试查看

http://hadooo102:16010

 

 

 

 

 

7.2 预分区

  每个 region 维护着 startRow 与 endRowKey,若是加入的数据符合某个 region 维护的
rowKey 范围,则该数据交给这个 region 维护。那么依照这个原则,咱们能够将数据所要投
放的分区提早大体的规划好,以提升 HBase 性能。

1.手动设定预分区

hbase> create 'staff1','info','partition1',SPLITS => ['1000','2000','3000','4000']

 

 

2.生成 16 进制序列预分区

  hbase(main):002:0> create 'staff2','info','partition2',{NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}

 

 

3.按照文件中设置的规则预分区

建立 splits.txt 文件内容以下:
aaaa
dddd
cccc
bbbb

 

 

而后执行:
hbase(main):003:0> create 'staff3','partition3',SPLITS_FILE => 'splits.txt'

 

 

4.使用 JavaAPI 建立预分区

//自定义算法,产生一系列 Hash 散列值存储在二维数组中
byte[][] splitKeys = 某个散列值函数
//建立 HBaseAdmin 实例
HBaseAdmin hAdmin = new HBaseAdmin(HBaseConfiguration.create());
//建立 HTableDescriptor 实例
HTableDescriptor tableDesc = new HTableDescriptor(tableName);
//经过 HTableDescriptor 实例和散列值二维数组建立带有预分区的 HBase 表
hAdmin.createTable(tableDesc, splitKeys);

 

 

 

7.3 RowKey 设计

  一条数据的惟一标识就是 rowkey,那么这条数据存储于哪一个分区,取决于 rowkey 处于
哪一个一个预分区的区间内,设计 rowkey的主要目的 ,就是让数据均匀的分布于全部的 region
中,在必定程度上防止数据倾斜。接下来咱们就谈一谈 rowkey 经常使用的设计方案。
 

1.生成随机数、hash、散列值

好比:
原 本 rowKey 为 1001 的 , SHA1 后变成:
dd01903921ea24941c26a48f2cec24e0bb0e8cc7
原 本 rowKey 为 3001 的 , SHA1 后变成:
49042c54de64a1e9bf0b33e00245660ef92dc7bd
原 本 rowKey 为 5001 的 , SHA1 后变成:
7b61dec07e02c188790670af43e717f0f46e8913
在作此操做以前,通常咱们会选择从数据集中抽取样本,来决定什么样的 rowKey 来 Hash
后做为每一个分区的临界值。

 

2.字符串反转

20170524000001 转成 10000042507102
20170524000002 转成 20000042507102
这样也能够在必定程度上散列逐步 put 进来的数据。
 

3.字符串拼接

20170524000001_a12e
20170524000001_93i7

 

 

 

7.4 内存优化

  HBase 操做过程当中须要大量的内存开销,毕竟 Table 是能够缓存在内存中的,通常会分
配整个可用内存的 70%给 HBase 的 Java 堆。可是不建议分配很是大的堆内存,由于 GC 过
程持续过久会致使 RegionServer 处于长期不可用状态, 通常 16~48G 内存就能够了,若是因
为框架占用内存太高致使系统内存不足,框架同样会被系统服务拖死。
 
 

7.5 基础优化

1.容许在 HDFS 的文件中追加内容

hdfs-site.xml、hbase-site.xml
属性:dfs.support.append
解释:开启 HDFS 追加同步,能够优秀的配合 HBase 的数据同步和持久化。默认值为 true

 

2.优化 DataNode 容许的最大文件打开数

hdfs-site.xml
属性:dfs.datanode.max.transfer.threads
解释:HBase 通常都会同一时间操做大量的文件,根据集群的数量和规模以及数据动做,//合并文件或者刷写的时候会操做大量的文件
设置为 4096 或者更高。默认值:4096  //须要看集群的大小而定

 

3.优化延迟高的数据操做的等待时间

hdfs-site.xml
属性:dfs.image.transfer.timeout
解释:若是对于某一次数据操做来说,延迟很是高,socket 须要等待更长的时间,建议把
该值设置为更大的值(默认 60000 毫秒),以确保 socket 不会被 timeout 掉。

 

4.优化数据的写入效率

mapred-site.xml
属性:
mapreduce.map.output.compress
mapreduce.map.output.compress.codec
解释:开启这两个数据能够大大提升文件的写入效率,减小写入时间。第一个属性值修改成
true,第二个属性值修改成:org.apache.hadoop.io.compress.GzipCodec 或者
其余压缩方式。

 

5.设置 RPC 监听数量

hbase-site.xml
属性:hbase.regionserver.handler.count
解释:默认值为 30,用于指定 RPC 监听的数量,能够根据客户端的请求数进行调整,读写
请求较多时,增长此值。

 

6.优化 HStore 文件大小

hbase-site.xml
属性:hbase.hregion.max.filesize
解释:默认值 10737418240(10GB),若是须要运行 HBase 的 MR 任务,能够减少此值,
由于一个 region 对应一个 map 任务,若是单个 region 过大,会致使 map 任务执行时间
过长。该值的意思就是,若是 HFile 的大小达到这个数值,则这个 region 会被切分为两
个 Hfile。

 

7.优化 hbase 客户端缓存

hbase-site.xml
属性:hbase.client.write.buffer
解释:用于指定 HBase 客户端缓存,增大该值能够减小 RPC 调用次数,可是会消耗更多内
存,反之则反之。通常咱们须要设定必定的缓存大小,以达到减小 RPC 次数的目的。

 

8.指定 scan.next 扫描 HBase 所获取的行数

hbase-site.xml
属性:hbase.client.scanner.caching
解释:用于指定 scan.next 方法获取的默认行数,值越大,消耗内存越大。

 

9.flush、compact、split 机制

当 MemStore 达到阈值,将 Memstore 中的数据 Flush 进 Storefile;compact 机制则是把 flush
出来的小文件合并成大的 Storefile 文件。split 则是当 Region 达到阈值,会把过大的 Region
一分为二。
涉及属性:
即:128M 就是 Memstore 的默认阈值
hbase.hregion.memstore.flush.size:134217728
即:这个参数的做用是当单个 HRegion 内全部的 Memstore 大小总和超过指定值时,flush 该
HRegion 的全部 memstore。RegionServer 的 flush 是经过将请求添加一个队列,模拟生产消
费模型来异步处理的。那这里就有一个问题,当队列来不及消费,产生大量积压请求时,可
能会致使内存陡增,最坏的状况是触发 OOM。
hbase.regionserver.global.memstore.upperLimit:0.4
hbase.regionserver.global.memstore.lowerLimit:0.38
即:当 MemStore 使用内存总量达到 hbase.regionserver.global.memstore.upperLimit 指定值时,
将会有多个 MemStores flush 到文件中,MemStore flush 顺序是按照大小降序执行的,直到
刷新到 MemStore 使用内存略小于 lowerLimit
 
 
一些 flush、compact 的相关默认值参考:
 
    <!-- 一个store里面容许存的hfile的个数,超过这个个数会被写到新的一个hfile里面 也便是每一个region的每一个列族对应的memstore在fulsh为hfile的时候,默认状况下当超过3个hfile的时候就会   
        对这些文件进行合并重写为一个新文件,设置个数越大能够减小触发合并的时间,可是每次合并的时间就会越长 -->  
    <property>  
        <name>hbase.hstore.compactionThreshold</name>  
        <value>3</value>  
        <description>  
            If more than this number of HStoreFiles in any one HStore  
            (one HStoreFile is written per flush of memstore) then a compaction  
            is run to rewrite all HStoreFiles files as one. Larger numbers  
            put off compaction but when it runs, it takes longer to complete.  
        </description>  
    </property>  
    <!-- 每一个minor compaction操做的 容许的最大hfile文件上限 -->  
    <property>  
        <name>hbase.hstore.compaction.max</name>  
        <value>10</value>  
        <description>Max number of HStoreFiles to compact per 'minor'  
            compaction.</description>  
    </property>  


    <!-- regionServer的全局memstore的大小,超过该大小会触发flush到磁盘的操做,默认是堆大小的40%,并且regionserver级别的   
        flush会阻塞客户端读写 -->  
    <property>  
        <name>hbase.regionserver.global.memstore.size</name>  
        <value></value>  
        <description>Maximum size of all memstores in a region server before  
            new  
            updates are blocked and flushes are forced. Defaults to 40% of heap (0.4).  
            Updates are blocked and flushes are forced until size of all  
            memstores  
            in a region server hits  
            hbase.regionserver.global.memstore.size.lower.limit.  
            The default value in this configuration has been intentionally left  
            emtpy in order to  
            honor the old hbase.regionserver.global.memstore.upperLimit property if  
            present.  
        </description>  
    </property>  
        <!-- 内存中的文件在自动刷新以前可以存活的最长时间,默认是1h -->  
    <property>  
        <name>hbase.regionserver.optionalcacheflushinterval</name>  
        <value>3600000</value>  
        <description>  
            Maximum amount of time an edit lives in memory before being automatically  
            flushed.  
            Default 1 hour. Set it to 0 to disable automatic flushing.  
        </description>  
    </property>  
     <!-- 单个region里memstore的缓存大小,超过那么整个HRegion就会flush,默认128M -->  
    <property>  
        <name>hbase.hregion.memstore.flush.size</name>  
        <value>134217728</value>  
        <description>  
            Memstore will be flushed to disk if size of the memstore  
            exceeds this number of bytes. Value is checked by a thread that runs  
            every hbase.server.thread.wakefrequency.  
        </description>  
    </property>  
相关文章
相关标签/搜索