tensorflow-windows-wheel 我选择了:1.12.0\py37\GPU\cuda100cudnn73sse2python
这两个我都安装的最新版。 Visual Studio 2017不装会致使安装CUDA时"Visual Studio Integration"组件安装失败,我在此处卡了几天,查了好多资料都无效。
安装好以后的环境变量默认包含: CUDA_PATH:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0 CUDA_PATH_V10_0:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0 PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\libnvvp C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\CUPTI\libx64(这个须要本身添加)
解压cuDNN后获得bin、include、lib三个文件夹 将bin下的cudnn64_7.dll拷贝到:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin 将include下的cudnn.h拷贝到:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\include 将lib\x64下的cudnn.lib拷贝到:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib\x64
conda create -n tensorflow_gpu_1.12_py37 python=3.7
conda activate tensorflow_gpu_1.12_py37
pip install E:\Downloads\tensorflow_gpu-1.12.0-cp37-cp37m-win_amd64.whl
进入python >>> import tensorflow as tf >>> hello = tf.constant('Hello, tensorflow!') >>> sess = tf.Session()输出:
2019-03-02 09:37:52.875467: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2 2019-03-02 09:37:53.200917: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties:name: GeForce RTX 2070 major: 7 minor: 5 memoryClockRate(GHz): 1.62 pciBusID: 0000:01:00.0 totalMemory: 8.00GiB freeMemory: 6.59GiB 2019-03-02 09:37:53.207587: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0 2019-03-02 09:40:52.845289: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix: 2019-03-02 09:40:52.848702: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0 2019-03-02 09:40:52.850105: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N 2019-03-02 09:40:52.854219: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6331 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2070, pci bus id: 0000:01:00.0, compute capability: 7.5)接着执行
print(sess.run(hello))输出:
b'Hello, tensorflow!'关闭session
sess.close()
至此结束,第一次感受开发环境搭建不容易。git