五年级英语水平,端午家庭做业。nginx
Nginx以异步、事件驱动的方式处理链接。传统的方式是每一个请求新起一个进程或线程,Nginx没这样作,它经过非阻塞sockets、epoll、kqueue等高效手段,实现一个worker进程处理多个链接和请求。数据库
通常状况下下是一个CPU内核对应一个worker进程,因此worker进程数量固定,而且很少,因此在任务切换上消耗的内存和CPU减小了。这种方式很不错,在高并发和扩展能力等方面都能体现。缓存
看图说话,任务切换不见了。服务器
可是异步事件模式很不喜欢阻塞(blocking)。不少第三方模块使用了阻塞模式的调用,有时候,用户乃至模块做者都不知道到阻塞调用会大大下降Nginx的性能。并发
Nginx本身的代码都有一些场景须要使用到阻塞,因此在1.7.11版本中,引入了新的“线程池”机制,在了解这个机制前,咱们先瞅瞅阻塞。app
了解阻塞前,先讲两句负载均衡
Nginx其实就是一个事件处理器,接收内核发出的全部与connections相关的事件信息,而后告诉操做系统该作什么。操做系统如此复杂和底层,因此Nginx的指挥必须叼。ssh
从上图看,有超时、sockets准备好读写、错误通知等事件。这些事件都放在一个队列中,Nginx对事件队列进行处理。异步
若是一个事件对于到的操做很是耗时,那么整个队列的处理就会延迟。socket
“阻塞操做”就是这样一个致使队列处理延迟的什么鬼。举个例子,CPU密集型计算,资源访问(硬盘、mutex、同步访问数据库等等)。发生阻塞时,worker进程只能等待。
就跟过安检时同样,若是你的队伍里面有个小朋友带了一大瓶AD钙奶,那你只有等他喝完。
有些系统提供的异步文件接口,例如FreeBSD。Linux也提供了相似机制,可是不太好用。首先它要求文件或缓存是扇区对齐的,好吧,Nginx能作到。其次更苛刻的一点是,它要求文件设置O_DIRECT标志位,这就是说,全部访问这个文件的操做都是直接读取,不走任何缓存,这样反而会增长磁盘IO负担。
问了解决这些问题,1.7.11版本中引入了线程池。
你家楼下的顺丰快递就是一个线程池,不用每次寄快递都要去顺丰总部,狗屎同样的比喻。。
对Nginx来讲,线程池的做用跟快递点同样。它包括一个任务队列以及配套线程。当一个worker进行须要处理阻塞操做时,它会将这个任务交给线程池来完成。
这里引入了一个新的队列,在例子中,这个队列由于读取资源致使缓慢,读取硬盘虽然慢,至少它不会影响事件队列的继续处理。
任何阻塞操做均可以放到线程池中。目前,咱们只尝试了两个核心操做:主流操做系统的read()系统调用和Linux上的sendfile()。后续通过性能测试会考虑归入更多的操做。
为了证明上述理论,进行了以下测试,测试场景包括各类阻塞操做和非阻塞操做。
咱们在一台48G内存的机器上生成了总共256的随机文件,每一个文件大小为4MB。这样作的目的是保证数据不受内存缓存影响。
简单的配置以下:
worker_processes 16; events { accept_mutex off; } http { include mime.types; default_type application/octet-stream; access_log off; sendfile on; sendfile_max_chunk 512k; server { listen 8000; location / { root /storage; } } }
配置中进行了一些调优:禁用logging和accpet_mutex,启用sendfile并设置sendfile_max_chunk,有利于减小阻塞调用sendfile时带来的总时间。
测试机器配置为双Intel至强E5645(共12核-24线程),10G网卡,四块西数1003FBYX组成的RAID10,系统为Ubuntu Server 14.04.1 LTS。
两台配置同样的客户端,一台机器经过Lua和wrk随机产生200个并发请求,每一个请求都不会命中缓存,因此Nginx处理时会产生读盘阻塞操做。另外一台机器则是产生50个并发请求,每一个请求读取固定文件,频繁的文件读取会命中缓存,因此通常状况下此类请求处理速度较快,当worker进程阻塞时请求速度会受影响。
经过ifstat和在第二台机器上wrk来监控系统吞吐性能。
无线程池结果
% ifstat -bi eth2 eth2 Kbps in Kbps out 5531.24 1.03e+06 4855.23 812922.7 5994.66 1.07e+06 5476.27 981529.3 6353.62 1.12e+06 5166.17 892770.3 5522.81 978540.8 6208.10 985466.7 6370.79 1.12e+06 6123.33 1.07e+06
吞吐量大约是1Gbps,从top看,全部的worker进程主要消耗在阻塞I/O上(top中的D状态)
top - 10:40:47 up 11 days, 1:32, 1 user, load average: 49.61, 45.77 62.89 Tasks: 375 total, 2 running, 373 sleeping, 0 stopped, 0 zombie %Cpu(s): 0.0 us, 0.3 sy, 0.0 ni, 67.7 id, 31.9 wa, 0.0 hi, 0.0 si, 0.0 st KiB Mem: 49453440 total, 49149308 used, 304132 free, 98780 buffers KiB Swap: 10474236 total, 20124 used, 10454112 free, 46903412 cached Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 4639 vbart 20 0 47180 28152 496 D 0.7 0.1 0:00.17 nginx 4632 vbart 20 0 47180 28196 536 D 0.3 0.1 0:00.11 nginx 4633 vbart 20 0 47180 28324 540 D 0.3 0.1 0:00.11 nginx 4635 vbart 20 0 47180 28136 480 D 0.3 0.1 0:00.12 nginx 4636 vbart 20 0 47180 28208 536 D 0.3 0.1 0:00.14 nginx 4637 vbart 20 0 47180 28208 536 D 0.3 0.1 0:00.10 nginx 4638 vbart 20 0 47180 28204 536 D 0.3 0.1 0:00.12 nginx 4640 vbart 20 0 47180 28324 540 D 0.3 0.1 0:00.13 nginx 4641 vbart 20 0 47180 28324 540 D 0.3 0.1 0:00.13 nginx 4642 vbart 20 0 47180 28208 536 D 0.3 0.1 0:00.11 nginx 4643 vbart 20 0 47180 28276 536 D 0.3 0.1 0:00.29 nginx 4644 vbart 20 0 47180 28204 536 D 0.3 0.1 0:00.11 nginx 4645 vbart 20 0 47180 28204 536 D 0.3 0.1 0:00.17 nginx 4646 vbart 20 0 47180 28204 536 D 0.3 0.1 0:00.12 nginx 4647 vbart 20 0 47180 28208 532 D 0.3 0.1 0:00.17 nginx 4631 vbart 20 0 47180 756 252 S 0.0 0.1 0:00.00 nginx 4634 vbart 20 0 47180 28208 536 D 0.0 0.1 0:00.11 nginx 4648 vbart 20 0 25232 1956 1160 R 0.0 0.0 0:00.08 top 25921 vbart 20 0 121956 2232 1056 S 0.0 0.0 0:01.97 sshd 25923 vbart 20 0 40304 4160 2208 S 0.0 0.0 0:00.53 zsh
IO受磁盘限制,CPU多数处于空闲状态。wrk结果代表性能也较低。
Running 1m test @ http://192.0.2.1:8000/1/1/1 12 threads and 50 connections Thread Stats Avg Stdev Max +/- Stdev Latency 7.42s 5.31s 24.41s 74.73% Req/Sec 0.15 0.36 1.00 84.62% 488 requests in 1.01m, 2.01GB read Requests/sec: 8.08 Transfer/sec: 34.07MB
须要提醒的是,这些请求本来是应该命中缓存很是快速的,可是由于worker进程受第一台服务器的200并发影响,因此最终比较慢。
接下来对照线程池实验,在location配置中添加一个aio线程指令
location / { root /storage; aio threads; }
从新加载Nginx配置后,重复上述测试
% ifstat -bi eth2 eth2 Kbps in Kbps out 60915.19 9.51e+06 59978.89 9.51e+06 60122.38 9.51e+06 61179.06 9.51e+06 61798.40 9.51e+06 57072.97 9.50e+06 56072.61 9.51e+06 61279.63 9.51e+06 61243.54 9.51e+06 59632.50 9.50e+06
哇,产生了9.5Gbps的吞吐性能。
性能没准还能更改,由于已经达到了网卡瓶颈。此次,worker进程主要消耗在sleeping和时间等待上(top中的S状态)。
top - 10:43:17 up 11 days, 1:35, 1 user, load average: 172.71, 93.84, 77.90 Tasks: 376 total, 1 running, 375 sleeping, 0 stopped, 0 zombie %Cpu(s): 0.2 us, 1.2 sy, 0.0 ni, 34.8 id, 61.5 wa, 0.0 hi, 2.3 si, 0.0 st KiB Mem: 49453440 total, 49096836 used, 356604 free, 97236 buffers KiB Swap: 10474236 total, 22860 used, 10451376 free, 46836580 cached Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 4654 vbart 20 0 309708 28844 596 S 9.0 0.1 0:08.65 nginx 4660 vbart 20 0 309748 28920 596 S 6.6 0.1 0:14.82 nginx 4658 vbart 20 0 309452 28424 520 S 4.3 0.1 0:01.40 nginx 4663 vbart 20 0 309452 28476 572 S 4.3 0.1 0:01.32 nginx 4667 vbart 20 0 309584 28712 588 S 3.7 0.1 0:05.19 nginx 4656 vbart 20 0 309452 28476 572 S 3.3 0.1 0:01.84 nginx 4664 vbart 20 0 309452 28428 524 S 3.3 0.1 0:01.29 nginx 4652 vbart 20 0 309452 28476 572 S 3.0 0.1 0:01.46 nginx 4662 vbart 20 0 309552 28700 596 S 2.7 0.1 0:05.92 nginx 4661 vbart 20 0 309464 28636 596 S 2.3 0.1 0:01.59 nginx 4653 vbart 20 0 309452 28476 572 S 1.7 0.1 0:01.70 nginx 4666 vbart 20 0 309452 28428 524 S 1.3 0.1 0:01.63 nginx 4657 vbart 20 0 309584 28696 592 S 1.0 0.1 0:00.64 nginx 4655 vbart 20 0 30958 28476 572 S 0.7 0.1 0:02.81 nginx 4659 vbart 20 0 309452 28468 564 S 0.3 0.1 0:01.20 nginx 4665 vbart 20 0 309452 28476 572 S 0.3 0.1 0:00.71 nginx 5180 vbart 20 0 25232 1952 1156 R 0.0 0.0 0:00.45 top 4651 vbart 20 0 20032 752 252 S 0.0 0.0 0:00.00 nginx 25921 vbart 20 0 121956 2176 1000 S 0.0 0.0 0:01.98 sshd 25923 vbart 20 0 40304 3840 2208 S 0.0 0.0 0:00.54 zsh
就是说,CPU仍是很富裕。
wrk的结果相差无几
Running 1m test @ http://192.0.2.1:8000/1/1/1 12 threads and 50 connections Thread Stats Avg Stdev Max +/- Stdev Latency 226.32ms 392.76ms 1.72s 93.48% Req/Sec 20.02 10.84 59.00 65.91% 15045 requests in 1.00m, 58.86GB read Requests/sec: 250.57 Transfer/sec: 0.98GB
4MB文件的请求时间从7.41秒提高至了226.32毫秒(约33倍),QPS提高了大约31倍(250比8)。
提高的缘由再也不赘述,大约就是事件队列没有受阻罢了。
看到这里,是否是立马就想去修改你的生产环境了,且慢。
事实上,绝大多数的read和sendfile都是在缓存页中进行的,操做系统会把频繁使用的文件放在缓存页中。
当你的数据量较小,而且内存足够大时,Nginx已是处于最佳状态了,开线程池反倒会引入开销。线程池可以良好应对的一个场景,是数据没法被彻底缓存,例如流媒体服务器,咱们上面的测试环境,就是模拟的流媒体服务。
可否用线程池来提高读操做的性能呢?惟一须要作的,就是能有效区分哪些文件已经被缓存,哪些文件未缓存。
我们的系统没有提供这样的信息。早在2010年Linux尝试经过fincore()来实现未果。接下来是preadv2()和RWF_NONBLOCK标志位方式,惋惜也很差用,具体能够参考内核bikeshedding一文。
哈哈,至少FreeBSD用户能够先喝咖啡了,无需在线程池问题上伤脑筋。
若是你确信引入线程池对性能提高有效,那么我们能够继续了解一些调优参数。
这些调优都是基于1.7.11+ 版本,编译选项为--with-threads参数。最简单的场景下,仅需在http、server或location区块配置aio thread参数便可
aio threads;
它对应的完整配置是
thread_pool default threads=32 max_queue=65536; aio threads=default;
默认状况下包括一个32个线程的线程池,长度为65536的请求队列。若是队列溢出,Nginx会输出以下错误并拒绝请求。
thread pool "NAME" queue overflow: N tasks waiting
这个错误表示这个线程池消费小于生产,因此能够增长队列长度,若是调整无效,说明系统达到了瓶颈。
另外,咱们能够调整线程相关的参数,例如对不一样场景,能够提供独立的线程池。
http { thread_pool one threads=128 max_queue=0; thread_pool two threads=32; server { location /one { aio threads=one; } location /two { aio threads=two; } } … }
在未定义max_queue时默认为65536,当设置成0时,服务能力等同线程数量。
假如你的缓存代理服务器有3块磁盘,内存不能放下预期须要缓存的文件,因此咱们首先须要让磁盘工做最大化。
一个方式是RAID,好坏兼并。另外一个方式是Nginx
# We assume that each of the hard drives is mounted on one of the directories: # /mnt/disk1, /mnt/disk2, or /mnt/disk3 accordingly proxy_cache_path /mnt/disk1 levels=1:2 keys_zone=cache_1:256m max_size=1024G use_temp_path=off; proxy_cache_path /mnt/disk2 levels=1:2 keys_zone=cache_2:256m max_size=1024G use_temp_path=off; proxy_cache_path /mnt/disk3 levels=1:2 keys_zone=cache_3:256m max_size=1024G use_temp_path=off; thread_pool pool_1 threads=16; thread_pool pool_2 threads=16; thread_pool pool_3 threads=16; split_clients $request_uri $disk { 33.3% 1; 33.3% 2; * 3; } location / { proxy_pass http://backend; proxy_cache_key $request_uri; proxy_cache cache_$disk; aio threads=pool_$disk; sendfile on; }
使用了3个独立的缓存,每一个缓存指定到一块磁盘,而后有3个独立的线程池。
split_clients模块用于缓存间的负载均衡。
use_temp_path=off参数让Nginx将缓存文件保存至文件同级目录,能够避免缓存更新时磁盘间的文件数据交换。
明天他妈又要上课了
原文地址:http://nginx.com/blog/thread-pools-boost-performance-9x/