JavaShuo
栏目
标签
论文阅读笔记《Finding Task-Relevant Features for Few-Shot Learning by Category Traversal 》
时间 2020-12-30
标签
深度学习
# 小样本学习
小样本学习
度量学习
特征学习
繁體版
原文
原文链接
核心思想 本文在度量学习算法的基础上提出了一种特征学习模块,用于改进原有算法特征提取网络的表征能力,进而提高小样本分类的准确性。本文设计的种类遍历模块(Category Traversal Module,CTM)可以作为一种即插即用的模块,直接添加到原有算法的网络中。相对于原有的特征提取网络,CTM有针对性地提取了“类内共有特征(intra-class commonality)”和“类间独有特
>>阅读原文<<
相关文章
1.
Finding Task-Relevant Features for Few-Shot Learning by Category Traversal 论文笔记
2.
Finding Task-Relevant Features for Few-Shot Learning by Category Traversal论文笔记
3.
Finding Task-Relevant Features for Few-Shot Learning by Category Traversal
4.
论文阅读-《Learning Deep Features for Discriminative Localization》
5.
论文阅读笔记:Learning Deep Features for Discriminative Localization
6.
《Learning Features and Parts for Fine-Grained Recognition》论文阅读笔记
7.
Machine Learning & Deep Learning 论文阅读笔记
8.
论文阅读笔记(四十):Learning Spatiotemporal Features with 3D Convolutional Networks(C3D)
9.
论文笔记:Learning Region Features for Object Detection
10.
Learning Deep Features for Discriminative Localization论文笔记
更多相关文章...
•
RSS 阅读器
-
RSS 教程
•
PHP 实例 - AJAX RSS 阅读器
-
PHP教程
•
Tomcat学习笔记(史上最全tomcat学习笔记)
•
JDK13 GA发布:5大特性解读
相关标签/搜索
论文阅读
论文阅读笔记
阅读笔记
论文笔记
CV论文阅读
Apple文档阅读笔记
traversal
finding
features
category
Thymeleaf 教程
MyBatis教程
Redis教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
微软准备淘汰 SHA-1
2.
Windows Server 2019 Update 2010,20H2
3.
Jmeter+Selenium结合使用(完整篇)
4.
windows服务基础
5.
mysql 查看线程及kill线程
6.
DevExpresss LookUpEdit详解
7.
GitLab简单配置SSHKey与计算机建立连接
8.
桶排序(BucketSort)
9.
桶排序(BucketSort)
10.
C++ 桶排序(BucketSort)
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Finding Task-Relevant Features for Few-Shot Learning by Category Traversal 论文笔记
2.
Finding Task-Relevant Features for Few-Shot Learning by Category Traversal论文笔记
3.
Finding Task-Relevant Features for Few-Shot Learning by Category Traversal
4.
论文阅读-《Learning Deep Features for Discriminative Localization》
5.
论文阅读笔记:Learning Deep Features for Discriminative Localization
6.
《Learning Features and Parts for Fine-Grained Recognition》论文阅读笔记
7.
Machine Learning & Deep Learning 论文阅读笔记
8.
论文阅读笔记(四十):Learning Spatiotemporal Features with 3D Convolutional Networks(C3D)
9.
论文笔记:Learning Region Features for Object Detection
10.
Learning Deep Features for Discriminative Localization论文笔记
>>更多相关文章<<