LinkedBlockingQueue 和 ConcurrentLinkedQueue 同样都是由 head 节点和 last 节点组成,每一个节点(Node)由节点元素(item)和指向下一个节点(next)的引用组成,节点与节点之间就是经过这个 next 关联起来,从而组成一张链表结构的队列。默认状况下 head 节点存储的元素为空,last 节点等于 head 节点。和 ConcurrentLinkedQueue 不一样的是 LinkedBlockingQueue 是基于 ReentrantLock 锁实现的,所以 head、last 以及 Node.item、Node.next 都不用 volatile 修辞。java
// head.item == null transient Node<E> head; // last.next == null private transient Node<E> last; private static class Node<E> { E item; Node<E> next; }
默认状况下 head、last 都是空节点。node
public LinkedBlockingQueue() { this(Integer.MAX_VALUE); } public LinkedBlockingQueue(int capacity) { if (capacity <= 0) throw new IllegalArgumentException(); this.capacity = capacity; last = head = new Node<E>(null); }
private final ReentrantLock takeLock = new ReentrantLock(); // 集合已空则调用notEmpty.await,等集合添加元素后调用notEmpty.singal private final Condition notEmpty = takeLock.newCondition(); private final ReentrantLock putLock = new ReentrantLock(); // 集合已满则调用notFull.await,等集合取出元素后调用notFull.singal private final Condition notFull = putLock.newCondition();
和 ConcurrentLinkedQueue 不一样,last 是实时指向尾节点的,也就是每次插入元素时都会更新尾节点。代码以下数据结构
// offer 非阻塞 public boolean offer(E e) { if (e == null) throw new NullPointerException(); final AtomicInteger count = this.count; if (count.get() == capacity) return false; // 1. c表示插入前元素的个数 int c = -1; Node<E> node = new Node<E>(e); final ReentrantLock putLock = this.putLock; putLock.lock(); try { // 2. 元素入队有2个操做:一是元素添加到last.next并更新last; // 二是唤醒阻塞的put操做继续添加元素(只有put时会阻塞notFull.await) if (count.get() < capacity) { // 2.1 元素入队 enqueue(node); // 2.2 c表示插入前元素的个数 c = count.getAndIncrement(); // 2.3 集合未满,唤醒put操做,继续添加元素 if (c + 1 < capacity) notFull.signal(); } } finally { putLock.unlock(); } // 3. 插入前集合为空,则唤醒take操做,能够取元素了 if (c == 0) signalNotEmpty(); return c >= 0; }
元素入队 enqueue 有两个操做:一是 last.next 节点指向 node;二是 last 指向新的尾节点 node。也就是说 last 必定是指向尾节点的。ide
private void enqueue(Node<E> node) { // assert putLock.isHeldByCurrentThread(); // assert last.next == null; last = last.next = node; }
// poll 非阻塞 public E poll() { final AtomicInteger count = this.count; if (count.get() == 0) return null; E x = null; // 1. poll操做前元素的个数 int c = -1; final ReentrantLock takeLock = this.takeLock; takeLock.lock(); try { // 2. 元素出队有2个操做:一是head.next出队 // 二是唤醒阻塞的take操做继续取出元素(只有take时会阻塞notEmpty.await) if (count.get() > 0) { // 2.1 head.next出队 x = dequeue(); // 2.2 c为poll前元素的个数 c = count.getAndDecrement(); // 2.3 集合中元素不为空,唤醒take操做,断续取元素 if (c > 1) notEmpty.signal(); } } finally { takeLock.unlock(); } // 3. 取元素前集合已满,则唤醒put操做,能够继续添加元素 if (c == capacity) signalNotFull(); return x; }
元素出队 dequeue 有三个操做:一是 head.next 出队;二是 head.next 指向本身,等待 GC 回收;三是修改 head 节点。源码分析
private E dequeue() { // assert takeLock.isHeldByCurrentThread(); // assert head.item == null; Node<E> h = head; Node<E> first = h.next; h.next = h; // help GC head = first; E x = first.item; first.item = null; return x; }
// 删除指定 value 的元素 public boolean remove(Object o) { if (o == null) return false; fullyLock(); try { for (Node<E> trail = head, p = trail.next; p != null; trail = p, p = p.next) { if (o.equals(p.item)) { // 删除指定节点 p,其中 trail 为 p 的前驱节点 unlink(p, trail); return true; } } return false; } finally { fullyUnlock(); } } // 删除指定节点 p,其中 trail 为 p 的前驱节点 // 注意 p.next 没变 void unlink(Node<E> p, Node<E> trail) { // assert isFullyLocked(); // p.next is not changed, to allow iterators that are // traversing p to maintain their weak-consistency guarantee. p.item = null; trail.next = p.next; if (last == p) last = trail; if (count.getAndDecrement() == capacity) notFull.signal(); }
// 将集合中的所有元素取出到集合 c 中 public int drainTo(Collection<? super E> c) { return drainTo(c, Integer.MAX_VALUE); } // 将集合中的 maxElements 个元素取出到集合 c 中 public int drainTo(Collection<? super E> c, int maxElements) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); if (maxElements <= 0) return 0; boolean signalNotFull = false; final ReentrantLock takeLock = this.takeLock; takeLock.lock(); try { int n = Math.min(maxElements, count.get()); // count.get provides visibility to first n Nodes Node<E> h = head; int i = 0; try { while (i < n) { Node<E> p = h.next; c.add(p.item); p.item = null; h.next = h; h = p; ++i; } return n; } finally { if (i > 0) { // assert h.item == null; head = h; signalNotFull = (count.getAndAdd(-i) == capacity); } } } finally { takeLock.unlock(); if (signalNotFull) signalNotFull(); } }
天天用心记录一点点。内容也许不重要,但习惯很重要!this