问题:算法
Given a list of airline tickets represented by pairs of departure and arrival airports [from, to]
, reconstruct the itinerary in order. All of the tickets belong to a man who departs from JFK
. Thus, the itinerary must begin with JFK
.api
Note:spa
["JFK", "LGA"]
has a smaller lexical order than ["JFK", "LGB"]
.Example 1:
tickets
= [["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
Return ["JFK", "MUC", "LHR", "SFO", "SJC"]
.code
Example 2:
tickets
= [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
Return ["JFK","ATL","JFK","SFO","ATL","SFO"]
.
Another possible reconstruction is ["JFK","SFO","ATL","JFK","ATL","SFO"]
. But it is larger in lexical order.orm
解决:three
① 使用Map+DFS。ip
定义:
欧拉回路:从图的某一个顶点出发,图中每条边走且仅走一次,最后回到出发点;若是这样的回路存在,则称之为欧拉回路。
欧拉路径:从图的某一个顶点出发,图中每条边走且仅走一次,最后到达某一个点;若是这样的路径存在,则称之为欧拉路径。判断:get
无向图欧拉回路判断:全部顶点的度数都为偶数。string
有向图欧拉回路判断:全部顶点的出度与入读相等。it
无向图欧拉路径判断: 至多有两个顶点的度数为奇数,其余顶点的度数为偶数。
有向图欧拉路径判断: 至多有两个顶点的入度和出度绝对值差1(如有两个这样的顶点,则必须其中一个出度大于入度,另外一个入度大于出度),其余顶点的入度与出度相等。
全部机场都是顶点,票据是有向边。 而后全部这些票造成一个有向图。
由于咱们知道欧拉路径存在,因此图必须是欧拉。
所以,从“JFK”开始,咱们能够应用Hierholzer算法在图中找到欧拉路径,这是一个有效的重构。
因为问题要求词法顺序最小的解决方案,咱们能够把邻居放在一个小堆里。 经过这种方式,咱们老是先访问最小的邻居。
class Solution { //10ms Map<String,PriorityQueue<String>> map = new HashMap<>(); List<String> res = new ArrayList<>(); public List<String> findItinerary(String[][] tickets) { for (String[] ticket : tickets){ if (! map.containsKey(ticket[0])){ PriorityQueue<String> queue = new PriorityQueue<>(); map.put(ticket[0],queue); } map.get(ticket[0]).offer(ticket[1]); } dfs("JFK"); return res; } public void dfs(String s){ PriorityQueue<String> queue = map.get(s); while(queue != null && ! queue.isEmpty()){ dfs(queue.poll()); } res.add(0,s); } }