使用ML.NET预测纽约出租车费

有了上一篇《.NET Core玩转机器学习》打基础,这一次我们以纽约出租车费的预测做为新的场景案例,来体验一下回归模型。 场景概述 我们的目标是预测纽约的出租车费,乍一看似乎仅仅取决于行程的距离和时长,然而纽约的出租车供应商对其他因素,如额外的乘客数、信用卡而不是现金支付等,会综合考虑而收取不同数额的费用。纽约市官方给出了一份样本数据。   确定策略 为了能够预测出租车费,我们选择通过机器学习建立
相关文章
相关标签/搜索