本套技术专栏是做者(秦凯新)平时工做的总结和升华,经过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。期待加入IOT时代最具战斗力的团队。QQ邮箱地址:1120746959@qq.com,若有任何学术交流,可随时联系。apache
事务:跨分区原子写入bootstrap
将容许一个生产者发送一批到不一样分区的消息,这些消息要么所有对任何一个消费者可见,要么对任何一个消费者都不可见。这个特性也容许你在一个事务中处理消费数据和提交消费偏移量,从而实现端到端的精确一次语义。安全
主要针对消息通过Partioner分区器到多个分区的状况。网络
producer.initTransactions();
try {
producer.beginTransaction();
producer.send(record1);
producer.send(record2);
producer.commitTransaction();
} catch(ProducerFencedException e) {
producer.close();
} catch(KafkaException e) {
producer.abortTransaction();
}
复制代码
在消费者方面,有两种选择来读取事务性消息,经过隔离等级“isolation.level”消费者配置表示:session
read_commited:除了读取不属于事务的消息以外,还能够读取事务提交后的消息。
read_uncommited:按照偏移位置读取全部消息,而不用等事务提交。这个选项相似Kafka消费者的当前语义。
复制代码
为了使用事务,须要配置消费者使用正确的隔离等级。ide
使用新版生产者,而且将生产者的“transactional . id”配置项设置为某个惟一ID。 须要此惟一ID来提供跨越应用程序从新启动的事务状态的连续性。fetch
消费端精确到一次语义实现:consumer经过subscribe方法注册到kafka,精确一次的语义要求必须手动管理offset,按照下述步骤进行设置:this
1.设置enable.auto.commit = false;spa
2.处理完消息以后不要手动提交offset,设计
3.经过subscribe方法将consumer注册到某个特定topic,
4.实现ConsumerRebalanceListener接口和consumer.seek(topicPartition,offset)方法(读取特定topic和partition的offset)
5.将offset和消息一块存储,确保原子性,推荐使用事务机制。
public class ExactlyOnceDynamicConsumer {
private static OffsetManager offsetManager = new OffsetManager("storage2");
public static void main(String[] str) throws InterruptedException {
System.out.println("Starting ManualOffsetGuaranteedExactlyOnceReadingDynamicallyBalancedPartitionConsumer ...");
readMessages();
}
private static void readMessages() throws InterruptedException {
KafkaConsumer<String, String> consumer = createConsumer();
// Manually controlling offset but register consumer to topics to get dynamically assigned partitions.
// Inside MyConsumerRebalancerListener use consumer.seek(topicPartition,offset) to control offset
consumer.subscribe(Arrays.asList("normal-topic"), new MyConsumerRebalancerListener(consumer));
processRecords(consumer);
}
private static KafkaConsumer<String, String> createConsumer() {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
String consumeGroup = "cg3";
props.put("group.id", consumeGroup);
props.put("enable.auto.commit", "false");
props.put("heartbeat.interval.ms", "2000");
props.put("session.timeout.ms", "6001");
* Control maximum data on each poll, make sure this value is bigger than the maximum single record size
props.put("max.partition.fetch.bytes", "140");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
return new KafkaConsumer<String, String>(props);
}
private static void processRecords(KafkaConsumer<String, String> consumer) {
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records) {
System.out.printf("offset = %d, key = %s, value = %s\n", record.offset(), record.key(), record.value());
offsetManager.saveOffsetInExternalStore(record.topic(), record.partition(), record.offset());
}
}
}
复制代码
}
public class MyConsumerRebalancerListener implements org.apache.kafka.clients.consumer.ConsumerRebalanceListener {
private OffsetManager offsetManager = new OffsetManager("storage2");
private Consumer<String, String> consumer;
public MyConsumerRebalancerListener(Consumer<String, String> consumer) {
this.consumer = consumer;
}
public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
for (TopicPartition partition : partitions) {
offsetManager.saveOffsetInExternalStore(partition.topic(), partition.partition(), consumer.position(partition));
}
}
public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
for (TopicPartition partition : partitions) {
consumer.seek(partition, offsetManager.readOffsetFromExternalStore(partition.topic(), partition.partition()));
}
}
复制代码
}
public class OffsetManager {
private String storagePrefix;
public OffsetManager(String storagePrefix) {
this.storagePrefix = storagePrefix;
}
void saveOffsetInExternalStore(String topic, int partition, long offset) {
try {
FileWriter writer = new FileWriter(storageName(topic, partition), false);
BufferedWriter bufferedWriter = new BufferedWriter(writer);
bufferedWriter.write(offset + "");
bufferedWriter.flush();
bufferedWriter.close();
} catch (Exception e) {
e.printStackTrace();
throw new RuntimeException(e);
}
}
long readOffsetFromExternalStore(String topic, int partition) {
try {
Stream<String> stream = Files.lines(Paths.get(storageName(topic, partition)));
return Long.parseLong(stream.collect(Collectors.toList()).get(0)) + 1;
} catch (Exception e) {
e.printStackTrace();
}
return 0;
}
private String storageName(String topic, int partition) {
return storagePrefix + "-" + topic + "-" + partition;
}
}
复制代码
Kafka 0.11.0.0版本的逆天之做,都是在消费者EOS语义较弱,须要进一步加强。
本套技术专栏是做者(秦凯新)平时工做的总结和升华,经过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。期待加入IOT时代最具战斗力的团队。QQ邮箱地址:1120746959@qq.com,若有任何学术交流,可随时联系。
秦凯新 于深圳 201812012146