一本通1486:【例题1】黑暗城堡

评测地点

【题目描述】

知道黑暗城堡有 N 个房间, M 条能够制造的双向通道,以及每条通道的长度。php

城堡是树形的而且知足下面的条件:ios

设$ D_i$为若是全部的通道都被修建,第 i 号房间与第 1 号房间的最短路径长度;git

\(S_i\) 为实际修建的树形城堡中第$ i$ 号房间与第$ 1 $号房间的路径长度;算法

要求对于全部整数 \(i(1≤i≤N)\),有$ S_i=D_i$ 成立。数组

你想知道有多少种不一样的城堡修建方案。固然,你只须要输出答案对 \(2^{31}−1\) 取模以后的结果就好了。spa

【输入】

第一行为两个由空格隔开的整数 \(N,M\);
第二行到第 \(M+1\) 行为 \(3\) 个由空格隔开的整数$ x,y,l$:表示 \(x\) 号房间与$ y$ 号房间之间的通道长度为 \(l\)code

【输出】

一个整数:不一样的城堡修建方案数对\(2^{31}-1\) 取模以后的结果。ip

【输入样例】

4 6
1 2 1
1 3 2
1 4 3
2 3 1
2 4 2
3 4 1

【输出样例】

6

【提示】

样例说明get

一共有$ 4$ 个房间,\(6\) 条道路,其中 1 号和$ 2$ 号,$ 1 $号和 3 号,\(1\) 号和 \(4\) 号,\(2\) 号和$ 3$ 号,\(2\) 号和 $4 $号,\(3\) 号和 \(4\) 号房间之间的通道长度分别为$ 1,2,3,1,2,1。$string

而不一样的城堡修建方案数对 $2^{31}−1 $取模以后的结果为 \(6\)

数据范围:

对于所有数据,\(1≤N≤1000,1≤M≤ \dfrac{N(N-1)}{2},1≤l≤200。\)

【分析】

先用\(dijkstra\)求出1号房间到每一个房间的单源最短路径存储到\(dis\)数组中。把树形城堡看做以1为根的有根树。由题,若\(x\)\(y\)的根节点,\(x、y\)之间的通道长度为\(z\),则应该有:\(dis[y]=dis[x]+z\)。事实上,咱们把知足题目要求的树结构,即对任意一对父子结点\(x、y\)都有上式成立的树结构,称为图的一棵最短路径生成树。与\(Prim\)算法相似,统计有多少结点\(x\)知足\(dis[p]=dis[x]+e[x][p]\),让\(p\)与其中任意一个x相连都符合题目要求。

【注意】

最短路径生成树:对于任意一对父子结点\(x、y\)均知足\(dis[y]=dis[x]+e[x][y]\)的树结构称为图的一棵最短路径生成树;
在宏定义中!! \(2^{31-1}\) 写为  \((1<<31)-1\)  要加括号!! 要加括号!! 否则就会\(wa\)好多好屡次了...
而后,不要忘了给\(e\)数组初始化....否则就默认为0了..
这题数据范围比较小,因此能够用邻接矩阵,不过这个是树,稀疏图,通常是用邻接表的。

【代码】

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<iomanip>
#include<cstdlib>
#include<queue>
#include<map>
#include<set>
#include<stack>
#include<vector>
#define ll long long
using namespace std;
inline ll read()
{
   ll s=0,w=1;
   char ch=getchar();
   while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();}
   while(isdigit(ch)) s=s*10+ch-'0',ch=getchar();
   return s*w;
}
int n,m;
ll dis[1010][1010],g[20000],cnt[20000];
bool vis[2000000]={0};
int main()
{
    n=read(),m=read();
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++)//1.预处理
        if(i==j)
            dis[i][j]=0;
        else
            dis[j][i]=dis[i][j]=1e18;
    for(int i=1,x,y,z;i<=m;i++)
    {
        x=read(),y=read(),z=read();
        if(dis[x][y]>z)
            dis[x][y]=dis[y][x]=z;//注意这一步判断
    }
    for(int i=1;i<=n;i++)
        g[i]=dis[1][i];
    for(int i=1;i<=n;i++)//2.用dijkstra算法求出一号房间到每一个房间的最短路
    {
        ll minn=1e18,u;
        for(int j=1;j<=n;j++)
            if(!vis[j]&&minn>g[j])
                minn=g[j],u=j;
        vis[u]=1;
        for(int j=1;j<=n;j++)
            if(g[j]>dis[u][j]+g[u])
                g[j]=g[u]+dis[u][j];
    }
    ll ans=1;
    for(int i=1;i<=n;i++)//3.方案累加
        for(int j=1;j<=n;j++)
            if(i!=j&&g[j]==g[i]+dis[i][j])
            cnt[j]++;
    for(int i=1;i<=n;i++)
        if(cnt[i])
        ans*=cnt[i],ans%=2147483647;
    printf("%lld",ans);
    return 0;
}
相关文章
相关标签/搜索