记一下这两天发现的问题.python
对frame或者series进行操做常常不知道会不会对原数据操做改变,并且与遇到SetingWithView的警告,作了下实验。测试
太长不看:code
- slice是view (和numpy保持一致)
- loc进行boolean筛选后的新Series是copy
- copy()方法后的是copy
- Series.T 转置以后的Series也是view (和numpy保持一致)
太长不看:pandas
- 对index或者column 进行slice是view
- loc单选一个index 或一个column是view
- loc进行boolean筛选是copy
- loc进行[ ] or () 选择是copy
- 使用1.2.3.4对frame同时进行index和column的操做,当且仅当index和column都是结果为view操做时,返回的frame或series才是view,其余是copy
太忙了,下次再写it
import numpy as np import pandas as pd a=pd.Series([1,2,3,4,5,6,7,8,9]) aid(a.values),aid(a.copy().values),aid(a[0:2].values),aid(a.loc[a%2==0].values),aid(a.T.values) A=pd.DataFrame([[0,0,0],[0,0,0],[0,0,0]],columns=['c1','c2','c3']) B=A['c1'] C=A.loc[:,'c1'] C1=A.loc[:,['c1']] # D=A.loc[:,'c1':'c2'] E=A.T aid(A['c1'].values),aid(B.values),aid(C.values),aid(C1['c1'].values),aid(E.loc[].values) #,aid(D['c1'].values) # another testing A=pd.DataFrame([[0,0,0],[0,0,0],[0,0,0]],columns=['c1','c2','c3']) B=A.loc[0] C=A.loc[0:1] C1=A.loc[0:1,['c1','c2']] C2=A.loc[0:1,'c1'] D=A.loc[A.index<2] A.at[0,'c1']=1 print('A......') print(A) print('B......') print(B) print('C......') print(C) print('C1......') print(C1) print('C2......') print(C2) print('D......') print(D)