Embedding在网易严选搜索推荐中的应用

导读:向量化在业界的运用越来越广,近期也有许多文章分享过相关的主题。严选于18年下半年开始探索向量化在搜索推荐场景中的运用,从最开始基于商品召回用户的任务到后续的搜索召回、搜索个性化排序、搜索底纹、搜索发现词、搜索建议词、跨类目推荐、推荐召回、多兴趣召回、通用排序、端智能重排等等,我们不断拓宽向量体系在严选的运用,在这过程中一点点迭代与沉淀。本文将从模型算法和落地运用等角度做简要介绍,希望能给读者
相关文章
相关标签/搜索