几种排序算法的学习,利用Python和C实现

以前学过的都忘了,也没好好作过总结,如今总结一下。python

 

 

时间复杂度和空间复杂度的概念:算法

一、空间复杂度:
是程序运行因此须要的额外消耗存储空间,通常的递归算法就要有o(n)的空间复杂度了,简单说就是递归集算时一般是反复调用同一个方法,递归n次,就须要n个空间。

二、时间复杂度:
一个算法花费的时间与算法中语句的执行次数成正比例,哪一个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
通常状况下,算法中基本操做重复执行的次数是问题规模n的某个函数,用T(n)表示,如有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f (n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记做T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
在各类不一样算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不一样,但时间复杂度相同,都为O(n2)。

按数量级递增排列,常见的时间复杂度有:

常数阶O(1),对数阶O(log2n),线性阶O(n),

线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),...,

目前我已经学过的排序算法包括数组

一、二次排序:app

     一、插入排序dom

     二、选择排序函数

二、递归排序:spa

   一、归并排序code

   二、快速排序htm

三、希尔排序blog

四、冒泡排序

 

1、冒泡排序

原理:  冒泡排序就是把小的元素往前调或者把大的元素日后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。

评价:是效率最低的一种排序算法。

时间复杂度:最差和平均均为O(n2)

稳定性:因为相等的元素不须要交换,因此比较稳定

代码:

C实现:

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

int msort(int array[],int n)
{
    int exchange = 0;
        int i,j;
        i=j=0;
    for(i=0;i<n;i++)
    {
        j=n-1;
        while(j > i)
        {
            int temp=0;
            //printf("%d",array[j]);
            if (array[j]<array[j-1])
            {
                temp = array[j];
                printf("%d",temp);
                array[j] = array[j-1];
                array[j-1] = temp;
                exchange = 1;
            }
            j=j-1;
        }
        if (exchange == 0)
            break;
    }
    for(i=0;i<n;i++)
        printf("%d\n",array[i]);
}

int main(void)
{
    int SIZE=9;
    int array[9]={5,2,8,2,7,9,10,20,15};
    int i=0;
    for(i=0;i<SIZE;i++)
        printf("%d\n",array[i]);
    msort(array,SIZE);
    return 0;
}


                

 

Python实现:

import timeit

def  msort(array):
    exchange=False
    for i in xrange(len(array)):
        j=len(array)-1
        while(j>i):
            if array[j]<array[j-1]:
                array[j-1],arra[j]=array[j],array[j-1]
                exchange=True
            j=j-1
        if exchange!=True:
            break

    print array

def main():
    array=list(range(0,10000))
    msort(array)

        

if __name__=="__main__":
    t=timeit.Timer("main()",'from __main__ import main')
    print t.timeit(1)

 

2、选择排序

原理:简单点说就是从数组第一个位置开始,给每一个位置在剩余的元素中都找到最小的值放上去。

评价:因为每次都要寻找最值,因此选择排序效率不高

时间复杂度:最坏,最优和平均时间复杂度都是O(n2).

稳定性:因为交换,可能致使相等元素的先后顺序发生变化,因此不稳定。好比 举个例子,序列5 8 5 2 9, 咱们知道第一遍选择第1个元素5会和2交换,那么原序列中25的相对先后顺序就被破坏了

代码:

C实现:

#include<stdio.h>
#include<stdlib.h>

void ssort(int array[],int n)
{
    int i,j;
    int small;
    for(i=0;i<n;i++)
    {
        small=i;
        for(j=i+1;j<n;j++)
        {
            if (array[j]<array[small])
                small=j;
        }
        int temp=0;
        if (small!=i)
        {
            temp=array[i];
            array[i]=array[small];
            array[small]=temp;
        }
    }
    for(i=0;i<n;i++)
        printf("%d ",array[i]);

}


int main(void)
{
    int array[7]={7,3,1,6,4,2,8};
    ssort(array,7);
}

 

Python实现:

def ssort(array):

    for i in xrange(0,len(array)):
        j=i+1
        small=i
        while j<len(array):
            if array[j]<array[small]:
                small=j;
            j+=1
        if i!=small:
            array[small],array[i] = array[i],array[small]

    return array




array=[2,62,7,3,8,1,1]
print 'any',all(array)
print ssort(array)

 

 

3、插入排序:

原理:为当前有序序列插入元素,插入到正确的位置。 固然,刚开始这个有序的小序列只有1个元素,就是第一个元素。比较是从有序序列的末尾开 始,也就是想要插入的元素和已经有序的最大者开始比起,若是比它大则直接插入在其后面,不然一直往前找直到找到它该插入的位置。

评价:对于比较有序的数组列表来讲,效率是线性的,至关快。

稳定度:若是遇见一个和插入元素相 等的,那么插入元素把想插入的元素放在相等元素的后面。因此,相等元素的先后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,因此插入排序是稳 定的。

时间复杂度:最差的状况是逆序的,须要O(n2),平均也是O(n2),最优的是线性的。

C实现

#include<stdio.h>
#include<stdlib.h>

int isort(int array[],int n)
{
    int i=0;
    int j;
    for(i=1;i<n;i++)
    {
        int temp=array[i];
        for(j=i;j>0&&array[j-1]>temp;j--)
        {
            array[j]=array[j-1];
        }
        array[j]=temp;
    }
    for(i=0;i<7;i++)
    {
        printf("%d ",array[i]);
}
}


int main(void)
{
    int array[7]={8,2,7,1,9,3,0};
    int result[7];
    isort(array,7);
}

Python实现:

def isort(array):
    for i in xrange(1,len(array)):
        temp=array[i]
        j=i
        while j>0 and array[j-1]>temp:
            array[j]=array[j-1]
            j=j-1
        array[j]=temp
    return array

    

print isort([6,3,2,1,8,4])

 

4、归并排序

原理:采用分治法,将数组分红两部分元素,如此下去,知道只剩下一个元素,采用递归调用。两部分数组比较,须要一个临时数组,存储有序值。

评价:算法很快,可是须要分配临时数组,耗费内存。

稳定度:因为在比较时,两个相等值能够保证位置不变,因此是稳定的。

时间复杂度:最优,最差和平均都是O(nlogn)

代码:

Python:

def merge(L1,L2):
    sorted_array=[]
    while L1 and L2:
        if L1[0] <= L2[0]:
            sorted_array.append(L1.pop(0))
        else:
            sorted_array.append(L2.pop(0))          
    if L1:
        sorted_array.extend(L1)             
    if L2:
        sorted_array.extend(L2)
    return sorted_array

def mersort(array):
    if len(array)<=1:
        return array
    center=int(len(array)/2)
    return merge(mersort(array[:center]),mersort(array[center:]))


if __name__=="__main__":
    array=[8,20,15,4,6,3,7,2,1,9]
    print mersort(array)
    

 

5、快速排序

原理:和归并排序的思想是相同的,都采用分治法,可是不一样的是须要选择一个基准数,根据基准数把数组分为两段,比基准数小的在左边,比基准数大的在右边。左右两边再分别采用这种方法,如此递归调用下去,知道只剩下一个元素。

评价:关键是找到基准数,基准数通常是随机选择三个值,选择中间值,或者选择数组第一个元素,可是若是第一个元素是最小的或最大的就糟糕了。

稳定性:不稳定。 好比序列为 5 3 3 4 3 8 9 10 11, 如今基准元素53(5个元素,下标从1开始计)交换就会把元素3的稳定性打乱,因此快速排序是一个不稳定的排序算法

时间复杂度:最坏的状况是O(n2),最好喝平均都是O(nlogn)

python实现:

import random

def partition(array,left,right):
    
    if right-left==1:
        if array[left]>array[right]:
            array[left],array[right]=array[right],array[left]
        return None

    base=array[left]
    big_index,small_index = left+1,right
    while big_index < small_index:
        while array[big_index] <= base and big_index < right:
            big_index += 1
        while array[small_index] >= base and small_index > left:
            small_index -=1
        if big_index < small_index:
            array[big_index],array[small_index] = array[small_index],array[big_index]
    array[left],array[small_index] = array[small_index],base
    return small_index

def qsort(array,left,right):
    if  right > left:
        mid=partition(array,left,right)
        if mid is not None:
            qsort(array,left,mid)
            qsort(array,mid+1,right)



if __name__=="__main__":
    array=[]
    for i in xrange(0,50):
        array.append(random.randint(0,30))
    qsort(array,0,(len(array)-1))
    print array




      

其实快速排对大数组颇有效率,但若是小数组,插入排序比较好,经验代表,元素数目小于15时,能够改成插入排序

Python:

import random
from insert.isort import import isort
def partition(array,left,right):
    
    if right-left==1:
        if array[left]>array[right]:
            array[left],array[right]=array[right],array[left]
        return None

    base=array[left]
    big_index,small_index = left+1,right
    while big_index < small_index:
        while array[big_index] <= base and big_index < right:
            big_index += 1
        while array[small_index] >= base and small_index > left:
            small_index -=1
        if big_index < small_index:
            array[big_index],array[small_index] = array[small_index],array[big_index]
    array[left],array[small_index] = array[small_index],base
    return small_index

def qsort(array,left,right):
    if  right-left>15:
        mid=partition(array,left,right)
        if mid is not None:
            qsort(array,left,mid)
            qsort(array,mid+1,right)
    else:
        isort(array)
        



if __name__=="__main__":
    array=[]
    for i in xrange(0,50):
        array.append(random.randint(0,30))
    qsort(array,0,(len(array)-1))
    print array

 

 

6、希尔排序

原理:采用不一样的步长,分别进行插入排序,直到步长为1.原理解释最直观的以下:

例如,假设有这样一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],若是咱们以步长为5开始进行排序,咱们能够经过将这列表放在有5列的表中来更好地描述算法,这样他们就应该看起来是这样:

13 14 94 33 82

25 59 94 65 23

45 27 73 25 39

10

而后咱们对每列进行排序:

10 14 73 25 23

13 27 94 33 39

25 59 94 65 82

45

将上述四行数字,依序接在一块儿时咱们获得:[ 10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45 ].这时10已经移至正确位置了,而后再以3为步长进行排序:

10 14 73

25 23 13

27 94 33

39 25 59

94 65 82

45

排序以后变为:

10 14 13

25 23 33

27 25 59

39 65 73

45 94 82

94

最后以1步长进行排序(此时就是简单的插入排序了)。

 

评价:选择步长是关键,选择好了,比较快,通常步长初始选择数组长度除以2,一直除以2,一直到步长为1.

稳定度:不稳定,不一样部分数组排序,颇有可能打破相等元素的顺序。

时间复杂度:(摘抄):

须要大量的辅助空间,和归并排序同样容易实现。希尔排序是基于插入排序的一种算法, 在此算法基础之上增长了一个新的特性,提升了效率。希尔排序的时间复杂度与增量序列的选取有关,例如希尔增量时间复杂度为O(n²),而Hibbard增量的希尔排序的时间复杂度为O(

),可是现今仍然没有人能找出希尔排序的精确下界。希尔排序没有快速排序算法快 O(n(logn)),所以中等大小规模表现良好,对规模很是大的数据排序不是最优选择。可是比O(

)复杂度的算法快得多。而且希尔排序很是容易实现,算法代码短而简单。 此外,希尔算法在最坏的状况下和平均状况下执行效率相差不是不少,与此同时快速排序在最坏的状况下执行的效率会很是差。专家们提倡,几乎任何排序工做在开始时均可以用希尔排序,若在实际使用中证实它不够快,再改为快速排序这样更高级的排序算法. 本质上讲,希尔排序算法是直接插入排序算法的一种改进,减小了其复制的次数,速度要快不少。 缘由是,当n值很大时数据项每一趟排序须要的个数不多,但数据项的距离很长。当n值减少时每一趟须要和动的数据增多,此时已经接近于它们排序后的最终位置。 正是这两种状况的结合才使希尔排序效率比插入排序高不少。

 

Python实现:

def shsort(array):
    interval = len(array)/2
    while interval >= 1:
        i = interval
        while i < len(array):
            if array[i] < array[i-interval]:
                j=i-interval
                temp=array[i]
                while j >=0 and array[j] >temp:
                    array[j+interval]=array[j]
                    j-=interval
                array[j+interval]=temp
            i+=1
        interval/=2

    return array


if __name__=="__main__":

    array=[3,6,9,5,7,4,8,2,1]
    print shsort(array)

 7、基数排序

原理:又名桶子排序,有10个桶。首先把个位数按照顺序放到桶子中,个位数相同的就放在同一个桶子里;而后再按照十位数的大小顺序放到桶子里,依次类推,最后获得结果。

评价:基数排序的时间复杂度是 O(k·n),其中n是排序元素个数,k是数字位数。注意这不是说这个时间复杂度必定优于O(n·log(n)),k的大小取决于数字位的选择(好比比特位数),和待排序数据所属数据类型的全集的大小;k决定了进行多少轮处理,而n是每轮处理的操做数目。

以排序n个不一样整数来举例,假定这些整数以B为底,这样每位数都有B个不一样的数字,k = logB(N),N是待排序数据类型全集的势。虽然有B个不一样的数字,须要B个不一样的桶,但在每一轮处理中,判断每一个待排序数据项只须要一次计算肯定对应数位的值,所以在每一轮处理的时候都须要平均n 次操做来把整数放到合适的桶中去,因此就有:

  • k 约等于 logB(N)

因此,基数排序的平均时间T就是:

T ~= log B( Nn

其中前一项是一个与输入数据无关的常数,固然该项不必定小于logn

稳定度:很稳定. 基数排序基于分别排序,分别收集,因此其是稳定的排序算法

时间复杂度:O(k·n)

Python实现:

def rsort(array):
    length = len(str(max(array)))
    locat = 0
    while locat < length:
        bucket = []
        for n in xrange(0,10):
            bucket.append([])
        for i in array:
            index=i%10 if not locat else i/(locat*10)%10
            bucket[index].append(i)    
                
        array = []
        for i in bucket:
            array.extend(i)
        locat += 1
    return array
   
    
    
   
print rsort([35,8611,84,36,745,154,39,4,3])
        

 8、堆排序

原理:构成堆,将末端值与根节点交换

稳定度:不稳定

时间复杂度:nlogn

Python实现:

def make_heap(array,start,end):
    lchild = lambda x:2*x+1
    rchild = lambda x:2*x+2
    root = start
    while True:
        left = lchild(root)
        if left > end:
            break
        right = rchild(root)
        child = right if right <= end and array[left]<array[right] else left
        if array[child] <= array[root]:
            break
        else:
            array[root],array[child] = array[child],array[root]
            root = child

        
def list_heap(array):
    for i in xrange(len(array)/2,-1,-1):
        make_heap(array,i,len(array)-1)
  

def hsort(array):
    list_heap(array)
    for end in xrange(len(array)-1,0,-1):
        array[0],array[end] = array[end],array[0]
        make_heap(array,0,end-1)
    return array


if __name__=="__main__":    array=[3,7,1,8,230,56,100,34,12,40,9,54,67,24,26]   print hsort(array)

相关文章
相关标签/搜索