机器学习课程总结

1结论 1.1总结和致谢 在这门课中 我们花了大量的时间 介绍了诸如线性回归 逻辑回归 神经网络 支持向量机 等等一些监督学习算法, 这类算法需要带标签的数据和样本 ,比如 x(i) y(i)。 然后我们也花了很多时间介绍无监督学习 ,例如 K-均值聚类 用于降维的主成分分析。 以及当你只有一系列无标签数据 x(i) 时的 异常检测算法, 当然 有时带标签的数据 也可以用于异常检测算法的评估 。
相关文章
相关标签/搜索