EM算法及其应用(一)


EM算法及其应用(一)

EM算法及其应用(二): K-means 与 高斯混合模型



EM算法是指望最大化 (Expectation Maximization) 算法的简称,用于含有隐变量的状况下,几率模型参数的极大似然估计或极大后验估计。EM算法是一种迭代算法,每次迭代由两步组成:E步,求指望 (expectation),即利用当前估计的参数值来计算对数似然函数的指望值;M步,求极大 (maximization),即求参数\(\theta\) 来极大化E步中的指望值,而求出的参数\(\theta\)将继续用于下一个E步中指望值的估计。EM算法在机器学习中应用普遍,本篇和下篇文章分别探讨EM算法的原理和其两大应用 —— K-means和高斯混合模型。html



\(\large{\S} \normalsize\mathrm{1}\) 先验知识


凸函数、凹函数和 Jensen不等式算法

\(f(x)\)为定义在区间\(I = [a,b]\)上的实值函数,对于任意\(\forall \, x_1, x_2 \in I, \lambda \in [0,1]\),有:
\[ f(\lambda \,x_1 + (1-\lambda)\,x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2) \]
\(f(x)\)为凸函数 (convex function),以下图所示。相应的,若上式中 \(\leqslant\) 变为 \(\geqslant\) ,则\(f(x)\)为凹函数 (concave function)。 凸函数的断定条件是二阶导 \(f^{''}(x) \geqslant 0\),而凹函数为 \(f^{''}(x) \leqslant 0\) 。后文要用到的对数函数\(ln(x)\)的二阶导为\(-\frac{1}{x^2} < 0\),因此是凹函数。机器学习

Jensen不等式就是上式的推广,设\(f(x)\)为凸函数,\(\lambda_i \geqslant 0, \;\; \sum_i \lambda_i = 1\),则:
\[ f\left(\sum\limits_{i=1}^n \lambda_i x_i\right) \leq \sum\limits_{i=1}^n \lambda_i f(x_i) \]
若是是凹函数,则将不等号反向,若用对数函数来表示,就是:
\[ ln\left(\sum\limits_{i=1}^n \lambda_i x_i\right) \geq \sum\limits_{i=1}^n \lambda_i ln(x_i) \]
若将\(\lambda_i\)视为一个几率分布,则可表示为指望值的形式,在后文中一样会引入几率分布:
\[ f(\mathbb{E}[\mathrm{x}]) \leq \mathbb{E}[f(\mathrm{x})] \]函数



KL散度post

KL散度(Kullback-Leibler divergence) 又称相对熵 (relative entropy),主要用于衡量两个几率分布p和q的差别,也可理解为两个分布对数差的指望。
\[ \mathbb{KL}(p||q) = \sum_i p(x_i)log \frac{p(x_i)}{q(x_i)}= \mathbb{E}_{\mathrm{x}\sim p}\left[log \frac{p(x)}{q(x)}\right] = \mathbb{E}_{\mathrm{x}\sim p}\left[log\,p(x) - log\,q(x) \right ] \]
KL散度总知足\(\mathbb{KL}(p||q) \geqslant 0\),而当且仅当\(q=p\)时,\(\mathbb{KL}(p||q) = 0\) 。 通常来讲分布\(p(x)\)比较复杂,于是但愿用比较简单的\(q(x)\)去近似\(p(x)\),而近似的标准就是KL散度越小越好。学习

KL散度不具有对称性,即\(\mathbb{KL}(p||q) \neq \mathbb{KL}(q||p)\),所以不能做为一个距离指标。优化



极大似然估计和极大后验估计spa

极大似然估计 (Maximum likelihood estimation) 是参数估计的经常使用方法,基本思想是在给定样本集的状况下,求使得该样本集出现的“可能性”最大的参数\(\theta\)。将参数\(\theta\)视为未知量,则参数\(\theta\)对于样本集X的对数似然函数为:
\[ L(\theta) = ln \,P(X|\theta) \]
这个函数反映了在观测结果X已知的条件下,\(\theta\)的各类值的“似然程度”。这里是把观测值X当作结果,把参数\(\theta\)当作是致使这个结果的缘由。参数\(\theta\)虽然未知可是有着固定值 (固然这是频率学派的观点),并不是事件或随机变量,无几率可言,于是改用 “似然(likelihood)" 这个词。orm

因而经过求导求解使得对数似然函数最大的参数\(\theta\)\(\theta = \mathop{\arg\max}\limits_{\theta}L(\theta)\),即为极大似然法。htm


极大后验估计 (Maximum a posteriori estimation) 是贝叶斯学派的参数估计方法,相比于频率学派,贝叶斯学派将参数\(\theta\)视为随机变量,并将其先验分布\(P(\theta)\)包含在估计过程当中。运用贝叶斯定理,参数\(\theta\)的后验分布为:
\[ P(\theta|X) = \frac{P(X,\theta)}{P(X)} = \frac{P(\theta)P(X|\theta)}{P(X)} \propto P(\theta)P(X|\theta) \]
上式中\(P(X)\)不依赖于\(\theta\)于是为常数项能够舍去,则最终结果为 \(\theta = \mathop{\arg\max}\limits_{\theta}P(\theta)P(X|\theta)\)




\(\large{\S} \normalsize\mathrm{2}\) EM算法初探


几率模型有时既含有观测变量 (observable variable),又含有隐变量 (hidden variable),隐变量顾名思义就是没法被观测到的变量。若是都是观测变量,则给定数据,能够直接使用极大似然估计。但若是模型含有隐变量时,直接求导获得参数比较困难。而EM算法就是解决此类问题的经常使用方法。

对于一个含有隐变量\(\mathbf{Z}\)的几率模型,通常将\(\{\mathbf{X}, \mathbf{Z}\}\)称为彻底数据,而观测数据\(\mathbf{X}\)为不彻底数据。

咱们的目标是极大化观测数据\(\mathbf{X}\)关于参数\(\boldsymbol{\theta}\)的对数似然函数。因为存在隐变量,于是也可表示为极大化\(\mathbf{X}\)的边缘分布 (marginal distribution),即:
\[ L(\boldsymbol{\theta}) = ln\,P(\mathbf{X}|\boldsymbol{\theta}) = ln\,\sum\limits_{\mathbf{Z}}P(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta}) \tag{1.1} \]
上式中存在“对数的和” —— \(ln\sum(\cdot)\),若是直接求导将会很是困难。于是EM算法采用曲线救国的策略,构建\((1.1)\)式的一个下界,而后经过极大化这个下界来间接达到极大化\((1.1)\)的效果。

要想构建下界,就须要运用上文中的Jensen不等式。记\(\boldsymbol{\theta}^{(t)}\)为第t步迭代参数的估计值,考虑引入一个分布\(P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{(t)})\),因为:

  1. \(P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{(t)}) \geqslant 0\)
  2. \(\sum_{\mathbf{Z}}P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{(t)}) = 1\)
  3. \(ln(\cdot)\)为凹函数

于是能够利用Jensen不等式求出\(L(\boldsymbol{\theta})\)的下界:
\[ \begin{align} L(\boldsymbol{\theta}) = ln\,\sum\limits_{\mathbf{Z}}P(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta}) &= ln\,\sum\limits_{\mathbf{Z}}P(\mathbf{Z|\mathbf{X},\boldsymbol{\theta}^{(t)}})\frac{P(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta}) }{P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{(t)})} \tag{1.2}\\ & \geqslant \sum\limits_{\mathbf{Z}}P(\mathbf{Z|\mathbf{X},\boldsymbol{\theta}^{(t)}}) \,ln\frac{P(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta}) }{P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{(t)})} \tag{1.3} \\ & = \underbrace{\sum\limits_{\mathbf{Z}}P(\mathbf{Z|\mathbf{X},\boldsymbol{\theta}^{(t)}}) \,ln{P(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta}) }}_{\mathcal{Q}(\boldsymbol{\theta},\boldsymbol{\theta}^{(t)})} \;\;\underbrace{- \sum\limits_{\mathbf{Z}}P(\mathbf{Z|\mathbf{X},\boldsymbol{\theta}^{(t)}}) \,ln{P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{(t)})}}_{entropy} \tag{1.4} \end{align} \]
\((1.3)\)式构成了\(L(\boldsymbol{\theta})\)的下界,而\((1.4)\)式的右边为\(P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{(t)})的熵 \geqslant 0\) ,其独立于咱们想要优化的参数\(\boldsymbol{\theta}\),于是是一个常数。因此极大化\(L(\boldsymbol{\theta})\)的下界\((1.3)\)式就等价于极大化\(\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)})\)\(\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)})\) (Q函数) 亦可表示为 \(\,\mathbb{E}_{\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{(t)}}\,lnP(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})\),其完整定义以下:

基于观测数据 \(\mathbf{X}\) 和 当前参数\(\theta^{(t)}\)计算未观测数据 \(\mathbf{Z}\) 的条件几率分布\(P(\mathbf{Z}|\mathbf{X}, \theta^{(t)})\),则Q函数为彻底数据的对数似然函数关于\(\mathbf{Z}\)的指望。

此即E步中指望值的来历。


接下来来看M步。在\((1.3)\)式中若令\(\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)}\),则下界\((1.3)\)式变为:
\[ \begin{align*} & \sum\limits_{\mathbf{Z}}P(\mathbf{Z|\mathbf{X},\boldsymbol{\theta}^{(t)}}) \,ln\frac{P(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta}^{(t)}) }{P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{(t)})} \\ =\;\; & \sum\limits_{\mathbf{Z}}P(\mathbf{Z|\mathbf{X},\boldsymbol{\theta}^{(t)}}) \,ln\frac{P(\mathbf{Z|\mathbf{X},\boldsymbol{\theta}^{(t)}})P(\mathbf{X}|\boldsymbol{\theta}^{(t)})}{P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{(t)})} \\ = \;\; & \sum\limits_{\mathbf{Z}}P(\mathbf{Z|\mathbf{X},\boldsymbol{\theta}^{(t)}}) \,lnP(\mathbf{X}|\boldsymbol{\theta}^{(t)}) \\ = \;\; & lnP(\mathbf{X}|\boldsymbol{\theta}^{(t)}) \;\;=\;\; L(\boldsymbol{\theta}^{(t)}) \end{align*} \]
能够看到在第t步,\(L(\boldsymbol{\theta}^{(t)})\)的下界与\(L(\boldsymbol{\theta}^{(t)})\)相等,又因为极大化下界与极大化Q函数等价,于是在M步选择一个新的\(\boldsymbol{\theta}\)来极大化\(\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)})\),就能使\(L(\boldsymbol{\theta}) \geqslant \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) \geqslant \mathcal{Q}(\boldsymbol{\theta}^{(t)}, \boldsymbol{\theta}^{(t)}) = L(\boldsymbol{\theta}^{(t)})\) (这里为了便于理解就将\(\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)})\)\((1.3)\)式等同了),也就是说\(L(\boldsymbol{\theta})\)是单调递增的,经过EM算法的不断迭代能保证收敛到局部最大值。



EM算法流程:

输入: 观测数据\(\mathbf{X}\),隐变量\(\mathbf{Z}\),联合几率分布\(P(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})\)

输出:模型参数\(\boldsymbol{\theta}\)

  1. 初始化参数\(\boldsymbol{\theta}^{(0)}\)
  2. E步: 利用当前参数\(\boldsymbol{\theta}^{(t)}\)计算Q函数, \(\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) = \sum\limits_{\mathbf{Z}}P(\mathbf{Z|\mathbf{X},\boldsymbol{\theta}^{(t)}}) \,ln{P(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})}\)
  3. M步: 极大化Q函数,求出相应的 \(\boldsymbol{\theta} = \mathop{argmax}\limits_{\boldsymbol{\theta}}\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)})\)
  4. 重复 2. 和3. 步直至收敛。


EM算法也可用于极大后验估计,极大后验估计仅仅是在极大似然估计的基础上加上参数\(\boldsymbol{\theta}\)的先验分布,即 \(p(\boldsymbol{\theta})p(\mathbf{X}|\boldsymbol{\theta})\),则取对数后变为\(ln\,p(\mathbf{X}|\boldsymbol{\theta}) + ln\,p(\boldsymbol{\theta})\),因为后面的\(ln\,p(\boldsymbol{\theta})\)不包含隐变量\(\mathbf{Z}\),因此E步中求Q函数的步骤不变。而在M步中须要求新的参数\(\mathbf{\theta}\),所以须要包含这一项,因此M步变为
\[ \boldsymbol{\theta} = \mathop{argmax}\limits_{\boldsymbol{\theta}} \left[\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) + ln(p(\boldsymbol{\theta})\right] \]




\(\large{\S} \normalsize\mathrm{3}\) EM算法深刻


上一节中遗留了一个问题:为何式\((1.2)\)中引入的分布是\(P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{(t)})\)而不是其余分布? 下面以另外一个角度来阐述。

假设一个关于隐变量\(\mathbf{Z}\)的任意分布\(q(\mathbf{Z})\),则运用指望值的定义,\((1.1)\)式变为:
\[ \begin{align*} L(\boldsymbol{\theta}) = lnP(\mathbf{X}|\boldsymbol{\theta}) &= \sum\limits_{\mathbf{Z}}q(\mathbf{Z})\,lnP(\mathbf{X}|\boldsymbol{\theta}) \quad\qquad \text{上下同乘以 $q(\mathbf{Z}) \,P(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$}\\ & = \sum\limits_{\mathbf{Z}}q(\mathbf{Z}) ln\frac{P(\mathbf{X}|\boldsymbol{\theta})q(\mathbf{Z}) P(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z}) P(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})} \\ & = \sum\limits_{\mathbf{Z}}q(\mathbf{Z}) ln\frac{P(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} + \sum\limits_{\mathbf{Z}}q(\mathbf{Z}) ln \frac{P(\mathbf{X}|\boldsymbol{\theta})q(\mathbf{Z}) }{P(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})} \\ & = \sum\limits_{\mathbf{Z}}q(\mathbf{Z}) ln\frac{P(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} + \sum\limits_{\mathbf{Z}}q(\mathbf{Z}) ln \frac{q(\mathbf{Z}) }{P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta})} \\ & = \underbrace{\sum\limits_{\mathbf{Z}}q(\mathbf{Z}) ln\frac{P(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})}}_{L(q,\boldsymbol{\theta})} + \mathbb{KL}(q(\mathbf{Z})||P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}))) \tag{2.1} \end{align*} \]
\((2.1)\)式的右端为\(q(\mathbf{Z})\)和后验分布\(P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta})\)的KL散度,由此 \(lnP(\mathbf{X}|\boldsymbol{\theta})\)被分解为\(L(q,\boldsymbol{\theta})\)\(\mathbb{KL}(q||p)\) 。因为KL散度总大于等于0,因此\(L(q,\boldsymbol{\theta})\)\(lnP(\mathbf{X}|\boldsymbol{\theta})\)的下界,如图:

由此可将EM算法视为一个坐标提高(coordinate ascent)的方法,分别在E步和M步不断提高下界\(L(q,\boldsymbol{\theta})\),进而提高\(lnP(\mathbf{X}|\boldsymbol{\theta})\)


在E步中,固定参数\(\boldsymbol{\theta}^{old}\),当且仅当\(\mathbb{KL}(q||p) = 0\),即\(L(q,\boldsymbol{\theta}) = lnP(\mathbf{X}|\boldsymbol{\theta})\)时,\(L(q,\boldsymbol{\theta})\)达到最大,而\(\mathbb{KL}(q||p) = 0\)的条件是\(q(\mathbf{Z}) = P(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})\),所以这就是式\((1.2)\)中选择分布\(P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{old})\)的缘由,如此一来\(L(q,\boldsymbol{\theta})\) 也就与\((1.3)\)式一致了。

在M步中,固定分布\(P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{old})\),选择新的\(\boldsymbol{\theta}^{new}\)来极大化\(L(q,\boldsymbol{\theta})\) 。同时因为\(P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{old}) \neq P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{new})\),因此\(\mathbb{KL}(P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{old}) || P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{new})) > 0\),致使\(lnP(\mathbf{X}|\boldsymbol{\theta})\)提高的幅度会大于\(L(q,\boldsymbol{\theta})\)提高的幅度,如图:

所以在EM算法的迭代过程当中,经过交替固定\(\boldsymbol{\theta}\)\(P(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{old})\)来提高下界\(L(q,\boldsymbol{\theta})\) ,进而提高对数似然函数\(L(\boldsymbol{\theta})\) ,从而在隐变量存在的状况下实现了极大似然估计。在下一篇中将探讨EM算法的具体应用。





Reference:

  1. Christopher M. Bishop. Pattern Recognition and Machine Learning
  2. 李航. 《统计学习方法》
  3. CS838. The EM Algorithm

/

相关文章
相关标签/搜索