机器学习-AUC/ROC

1.ROC 接收者操作特征曲线(receiver operating characteristic curve,或者叫ROC曲线) ROC空间将伪阳性率(FPR)定义为 X 轴,真阳性率(TPR)定义为 Y 轴。 TPR:在所有实际为阳性的样本中,被正确地判断为阳性之比率。 FPR:在所有实际为阴性的样本中,被错误地判断为阳性之比率。 给定一个二元分类模型和它的阈值,就能从所有样本的(阳性/阴性)
相关文章
相关标签/搜索