9种 分布式ID生成方案,让你一次学个够

我的博客地址: http://www.chengxy-nds.top,别有洞天

前两天公众号有个粉丝给我留言吐槽最近面试:“小富,年前我在公司受点委屈一冲动就裸辞了,而后如今疫情严重两个多月还没找到工做,接了几个视频面试也都没下文。好多面试官问完一个问题,紧接着说还会其余解决方法吗?能干活解决bug不就好了吗?那还得会多少种方法?javascript

面试官应该是对应聘者的回答不太满意,他想听到一个他认为最优的解决方案,其实这无可厚非。一样一个bug,能用一行代码解决问题的人和用十行代码解决问题的人,你会选哪一个入职?显而易见的事情!因此看待问题仍是要从多个角度出发,每种方法都有各自的利弊。java


1、为何要用分布式ID?

在说分布式ID的具体实现以前,咱们来简单分析一下为何用分布式ID?分布式ID应该知足哪些特征?mysql

一、什么是分布式ID?

拿MySQL数据库举个栗子:git

在咱们业务数据量不大的时候,单库单表彻底能够支撑现有业务,数据再大一点搞个MySQL主从同步读写分离也能对付。程序员

但随着数据日渐增加,主从同步也扛不住了,就须要对数据库进行分库分表,但分库分表后须要有一个惟一ID来标识一条数据,数据库的自增ID显然不能知足需求;特别一点的如订单、优惠券也都须要有惟一ID作标识。此时一个可以生成全局惟一ID的系统是很是必要的。那么这个全局惟一ID就叫分布式IDgithub

二、那么分布式ID须要知足那些条件?
  • 全局惟一:必须保证ID是全局性惟一的,基本要求
  • 高性能:高可用低延时,ID生成响应要块,不然反倒会成为业务瓶颈
  • 高可用:100%的可用性是骗人的,可是也要无限接近于100%的可用性
  • 好接入:要秉着拿来即用的设计原则,在系统设计和实现上要尽量的简单
  • 趋势递增:最好趋势递增,这个要求就得看具体业务场景了,通常不严格要求

2、 分布式ID都有哪些生成方式?

今天主要分析一下如下9种,分布式ID生成器方式以及优缺点:面试

  • UUID
  • 数据库自增ID
  • 数据库多主模式
  • 号段模式
  • Redis
  • 雪花算法(SnowFlake)
  • 滴滴出品(TinyID)
  • 百度 (Uidgenerator)
  • 美团(Leaf)

那么它们都是如何实现?以及各自有什么优缺点?咱们往下看
图片源自网络redis

以上图片源自网络,若有侵权联系删除
一、基于UUID

在Java的世界里,想要获得一个具备惟一性的ID,首先被想到可能就是UUID,毕竟它有着全球惟一的特性。那么UUID能够作分布式ID吗?答案是能够的,可是并不推荐!算法

public static void main(String[] args) { 
       String uuid = UUID.randomUUID().toString().replaceAll("-","");
       System.out.println(uuid);
 }

UUID的生成简单到只有一行代码,输出结果 c2b8c2b9e46c47e3b30dca3b0d447718,但UUID却并不适用于实际的业务需求。像用做订单号UUID这样的字符串没有丝毫的意义,看不出和订单相关的有用信息;而对于数据库来讲用做业务主键ID,它不只是太长仍是字符串,存储性能差查询也很耗时,因此不推荐用做分布式IDsql

优势:

  • 生成足够简单,本地生成无网络消耗,具备惟一性

缺点:

  • 无序的字符串,不具有趋势自增特性
  • 没有具体的业务含义
  • 长度过长16 字节128位,36位长度的字符串,存储以及查询对MySQL的性能消耗较大,MySQL官方明确建议主键要尽可能越短越好,做为数据库主键 UUID 的无序性会致使数据位置频繁变更,严重影响性能。
二、基于数据库自增ID

基于数据库的auto_increment自增ID彻底能够充当分布式ID,具体实现:须要一个单独的MySQL实例用来生成ID,建表结构以下:

CREATE DATABASE `SEQ_ID`;
CREATE TABLE SEQID.SEQUENCE_ID (
    id bigint(20) unsigned NOT NULL auto_increment, 
    value char(10) NOT NULL default '',
    PRIMARY KEY (id),
) ENGINE=MyISAM;
insert into SEQUENCE_ID(value)  VALUES ('values');

当咱们须要一个ID的时候,向表中插入一条记录返回主键ID,但这种方式有一个比较致命的缺点,访问量激增时MySQL自己就是系统的瓶颈,用它来实现分布式服务风险比较大,不推荐!

优势:

  • 实现简单,ID单调自增,数值类型查询速度快

缺点:

  • DB单点存在宕机风险,没法扛住高并发场景
三、基于数据库集群模式

前边说了单点数据库方式不可取,那对上边的方式作一些高可用优化,换成主从模式集群。惧怕一个主节点挂掉无法用,那就作双主模式集群,也就是两个Mysql实例都能单独的生产自增ID。

那这样还会有个问题,两个MySQL实例的自增ID都从1开始,会生成重复的ID怎么办?

解决方案:设置起始值自增步长

MySQL_1 配置:

set @@auto_increment_offset = 1;     -- 起始值
set @@auto_increment_increment = 2;  -- 步长

MySQL_2 配置:

set @@auto_increment_offset = 2;     -- 起始值
set @@auto_increment_increment = 2;  -- 步长

这样两个MySQL实例的自增ID分别就是:

一、三、五、七、9
二、四、六、八、10

那若是集群后的性能仍是扛不住高并发咋办?就要进行MySQL扩容增长节点,这是一个比较麻烦的事。

在这里插入图片描述
从上图能够看出,水平扩展的数据库集群,有利于解决数据库单点压力的问题,同时为了ID生成特性,将自增步长按照机器数量来设置。

增长第三台MySQL实例须要人工修改1、二两台MySQL实例的起始值和步长,把第三台机器的ID起始生成位置设定在比现有最大自增ID的位置远一些,但必须在1、二两台MySQL实例ID尚未增加到第三台MySQL实例起始ID值的时候,不然自增ID就要出现重复了,必要时可能还须要停机修改

优势:

  • 解决DB单点问题

缺点:

  • 不利于后续扩容,并且实际上单个数据库自身压力仍是大,依旧没法知足高并发场景。
四、基于数据库的号段模式

号段模式是当下分布式ID生成器的主流实现方式之一,号段模式能够理解为从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 表明1000个ID,具体的业务服务将本号段,生成1~1000的自增ID并加载到内存。表结构以下:

CREATE TABLE id_generator (
  id int(10) NOT NULL,
  max_id bigint(20) NOT NULL COMMENT '当前最大id',
  step int(20) NOT NULL COMMENT '号段的布长',
  biz_type    int(20) NOT NULL COMMENT '业务类型',
  version int(20) NOT NULL COMMENT '版本号',
  PRIMARY KEY (`id`)
)

biz_type :表明不一样业务类型

max_id :当前最大的可用id

step :表明号段的长度

version :是一个乐观锁,每次都更新version,保证并发时数据的正确性

id biz_type max_id step version
1 101 1000 2000 0

等这批号段ID用完,再次向数据库申请新号段,对max_id字段作一次update操做,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]

update id_generator set max_id = #{max_id+step}, version = version + 1 where version = # {version} and biz_type = XXX

因为多业务端可能同时操做,因此采用版本号version乐观锁方式更新,这种分布式ID生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小不少。

五、基于Redis模式

Redis也一样能够实现,原理就是利用redisincr命令实现ID的原子性自增。

127.0.0.1:6379> set seq_id 1     // 初始化自增ID为1
OK
127.0.0.1:6379> incr seq_id      // 增长1,并返回递增后的数值
(integer) 2

redis实现须要注意一点,要考虑到redis持久化的问题。redis有两种持久化方式RDBAOF

  • RDB会定时打一个快照进行持久化,假如连续自增但redis没及时持久化,而这会Redis挂掉了,重启Redis后会出现ID重复的状况。

    • AOF会对每条写命令进行持久化,即便Redis挂掉了也不会出现ID重复的状况,但因为incr命令的特殊性,会致使Redis重启恢复的数据时间过长。
六、基于雪花算法(Snowflake)模式

雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特点的分布式生成器。

在这里插入图片描述

以上图片源自网络,若有侵权联系删除

Snowflake生成的是Long类型的ID,一个Long类型占8个字节,每一个字节占8比特,也就是说一个Long类型占64个比特。

Snowflake ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 数据中心(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。

  • 第一个bit位(1bit):Java中long的最高位是符号位表明正负,正数是0,负数是1,通常生成ID都为正数,因此默认为0。
  • 时间戳部分(41bit):毫秒级的时间,不建议存当前时间戳,而是用(当前时间戳 - 固定开始时间戳)的差值,可使产生的ID从更小的值开始;41位的时间戳可使用69年,(1L << 41) / (1000L 60 60 24 365) = 69年
  • 工做机器id(10bit):也被叫作workId,这个能够灵活配置,机房或者机器号组合均可以。
  • 序列号部分(12bit),自增值支持同一毫秒内同一个节点能够生成4096个ID

根据这个算法的逻辑,只须要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用能够直接使用该工具方法来获取分布式ID,只需保证每一个业务应用有本身的工做机器id便可,而不须要单独去搭建一个获取分布式ID的应用。

Java版本的Snowflake算法实现:

/**
 * Twitter的SnowFlake算法,使用SnowFlake算法生成一个整数,而后转化为62进制变成一个短地址URL
 *
 * https://github.com/beyondfengyu/SnowFlake
 */
public class SnowFlakeShortUrl {

    /**
     * 起始的时间戳
     */
    private final static long START_TIMESTAMP = 1480166465631L;

    /**
     * 每一部分占用的位数
     */
    private final static long SEQUENCE_BIT = 12;   //序列号占用的位数
    private final static long MACHINE_BIT = 5;     //机器标识占用的位数
    private final static long DATA_CENTER_BIT = 5; //数据中心占用的位数

    /**
     * 每一部分的最大值
     */
    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
    private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
    private final static long MAX_DATA_CENTER_NUM = -1L ^ (-1L << DATA_CENTER_BIT);

    /**
     * 每一部分向左的位移
     */
    private final static long MACHINE_LEFT = SEQUENCE_BIT;
    private final static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
    private final static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT;

    private long dataCenterId;  //数据中心
    private long machineId;     //机器标识
    private long sequence = 0L; //序列号
    private long lastTimeStamp = -1L;  //上一次时间戳

    private long getNextMill() {
        long mill = getNewTimeStamp();
        while (mill <= lastTimeStamp) {
            mill = getNewTimeStamp();
        }
        return mill;
    }

    private long getNewTimeStamp() {
        return System.currentTimeMillis();
    }

    /**
     * 根据指定的数据中心ID和机器标志ID生成指定的序列号
     *
     * @param dataCenterId 数据中心ID
     * @param machineId    机器标志ID
     */
    public SnowFlakeShortUrl(long dataCenterId, long machineId) {
        if (dataCenterId > MAX_DATA_CENTER_NUM || dataCenterId < 0) {
            throw new IllegalArgumentException("DtaCenterId can't be greater than MAX_DATA_CENTER_NUM or less than 0!");
        }
        if (machineId > MAX_MACHINE_NUM || machineId < 0) {
            throw new IllegalArgumentException("MachineId can't be greater than MAX_MACHINE_NUM or less than 0!");
        }
        this.dataCenterId = dataCenterId;
        this.machineId = machineId;
    }

    /**
     * 产生下一个ID
     *
     * @return
     */
    public synchronized long nextId() {
        long currTimeStamp = getNewTimeStamp();
        if (currTimeStamp < lastTimeStamp) {
            throw new RuntimeException("Clock moved backwards.  Refusing to generate id");
        }

        if (currTimeStamp == lastTimeStamp) {
            //相同毫秒内,序列号自增
            sequence = (sequence + 1) & MAX_SEQUENCE;
            //同一毫秒的序列数已经达到最大
            if (sequence == 0L) {
                currTimeStamp = getNextMill();
            }
        } else {
            //不一样毫秒内,序列号置为0
            sequence = 0L;
        }

        lastTimeStamp = currTimeStamp;

        return (currTimeStamp - START_TIMESTAMP) << TIMESTAMP_LEFT //时间戳部分
                | dataCenterId << DATA_CENTER_LEFT       //数据中心部分
                | machineId << MACHINE_LEFT             //机器标识部分
                | sequence;                             //序列号部分
    }
    
    public static void main(String[] args) {
        SnowFlakeShortUrl snowFlake = new SnowFlakeShortUrl(2, 3);

        for (int i = 0; i < (1 << 4); i++) {
            //10进制
            System.out.println(snowFlake.nextId());
        }
    }
}
七、百度(uid-generator)

uid-generator是由百度技术部开发,项目GitHub地址 https://github.com/baidu/uid-...

uid-generator是基于Snowflake算法实现的,与原始的snowflake算法不一样在于,uid-generator支持自定义时间戳工做机器ID序列号 等各部分的位数,并且uid-generator中采用用户自定义workId的生成策略。

uid-generator须要与数据库配合使用,须要新增一个WORKER_NODE表。当应用启动时会向数据库表中去插入一条数据,插入成功后返回的自增ID就是该机器的workId数据由host,port组成。

对于uid-generator ID组成结构

workId,占用了22个bit位,时间占用了28个bit位,序列化占用了13个bit位,须要注意的是,和原始的snowflake不太同样,时间的单位是秒,而不是毫秒,workId也不同,并且同一应用每次重启就会消费一个workId

参考文献
https://github.com/baidu/uid-...
八、美团(Leaf)

Leaf由美团开发,github地址:https://github.com/Meituan-Di...

Leaf同时支持号段模式和snowflake算法模式,能够切换使用。

号段模式

先导入源码 https://github.com/Meituan-Di... ,在建一张表leaf_alloc

DROP TABLE IF EXISTS `leaf_alloc`;

CREATE TABLE `leaf_alloc` (
  `biz_tag` varchar(128)  NOT NULL DEFAULT '' COMMENT '业务key',
  `max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',
  `step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',
  `description` varchar(256)  DEFAULT NULL COMMENT '业务key的描述',
  `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',
  PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB;

而后在项目中开启号段模式,配置对应的数据库信息,并关闭snowflake模式

leaf.name=com.sankuai.leaf.opensource.test
leaf.segment.enable=true
leaf.jdbc.url=jdbc:mysql://localhost:3306/leaf_test?useUnicode=true&characterEncoding=utf8&characterSetResults=utf8
leaf.jdbc.username=root
leaf.jdbc.password=root

leaf.snowflake.enable=false
#leaf.snowflake.zk.address=
#leaf.snowflake.port=

启动leaf-server 模块的 LeafServerApplication项目就跑起来了

号段模式获取分布式自增ID的测试url :http://localhost:8080/api/segment/get/leaf-segment-test

监控号段模式:http://localhost:8080/cache

snowflake模式

Leaf的snowflake模式依赖于ZooKeeper,不一样于原始snowflake算法也主要是在workId的生成上,LeafworkId是基于ZooKeeper的顺序Id来生成的,每一个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,至关于一台机器对应一个顺序节点,也就是一个workId

leaf.snowflake.enable=true
leaf.snowflake.zk.address=127.0.0.1
leaf.snowflake.port=2181

snowflake模式获取分布式自增ID的测试url:http://localhost:8080/api/snowflake/get/test

九、滴滴(Tinyid)

Tinyid由滴滴开发,Github地址:https://github.com/didi/tinyid

Tinyid是基于号段模式原理实现的与Leaf一模一样,每一个服务获取一个号段(1000,2000]、(2000,3000]、(3000,4000]在这里插入图片描述
Tinyid提供httptinyid-client两种方式接入

Http方式接入

(1)导入Tinyid源码:

git clone https://github.com/didi/tinyi...

(2)建立数据表:

CREATE TABLE `tiny_id_info` (
  `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增主键',
  `biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '业务类型,惟一',
  `begin_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '开始id,仅记录初始值,无其余含义。初始化时begin_id和max_id应相同',
  `max_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '当前最大id',
  `step` int(11) DEFAULT '0' COMMENT '步长',
  `delta` int(11) NOT NULL DEFAULT '1' COMMENT '每次id增量',
  `remainder` int(11) NOT NULL DEFAULT '0' COMMENT '余数',
  `create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '建立时间',
  `update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
  `version` bigint(20) NOT NULL DEFAULT '0' COMMENT '版本号',
  PRIMARY KEY (`id`),
  UNIQUE KEY `uniq_biz_type` (`biz_type`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'id信息表';

CREATE TABLE `tiny_id_token` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增id',
  `token` varchar(255) NOT NULL DEFAULT '' COMMENT 'token',
  `biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '此token可访问的业务类型标识',
  `remark` varchar(255) NOT NULL DEFAULT '' COMMENT '备注',
  `create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '建立时间',
  `update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'token信息表';

INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
VALUES
    (1, 'test', 1, 1, 100000, 1, 0, '2018-07-21 23:52:58', '2018-07-22 23:19:27', 1);

INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
VALUES
    (2, 'test_odd', 1, 1, 100000, 2, 1, '2018-07-21 23:52:58', '2018-07-23 00:39:24', 3);


INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
VALUES
    (1, '0f673adf80504e2eaa552f5d791b644c', 'test', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');

INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
VALUES
    (2, '0f673adf80504e2eaa552f5d791b644c', 'test_odd', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');

(3)配置数据库:

datasource.tinyid.names=primary
datasource.tinyid.primary.driver-class-name=com.mysql.jdbc.Driver
datasource.tinyid.primary.url=jdbc:mysql://ip:port/databaseName?autoReconnect=true&useUnicode=true&characterEncoding=UTF-8
datasource.tinyid.primary.username=root
datasource.tinyid.primary.password=123456

(4)启动tinyid-server后测试

获取分布式自增ID: http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c'
返回结果: 3

批量获取分布式自增ID:
http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c&batchSize=10'
返回结果:  4,5,6,7,8,9,10,11,12,13
Java客户端方式接入

重复Http方式的(2)(3)操做

引入依赖

<dependency>
            <groupId>com.xiaoju.uemc.tinyid</groupId>
            <artifactId>tinyid-client</artifactId>
            <version>${tinyid.version}</version>
        </dependency>

配置文件

tinyid.server =localhost:9999
tinyid.token =0f673adf80504e2eaa552f5d791b644c

testtinyid.token是在数据库表中预先插入的数据,test 是具体业务类型,tinyid.token表示可访问的业务类型

// 获取单个分布式自增ID
Long id =  TinyId . nextId( " test " );

// 按需批量分布式自增ID
List< Long > ids =  TinyId . nextId( " test " , 10 );

总结

本文只是简单介绍一下每种分布式ID生成器,旨在给你们一个详细学习的方向,每种生成方式都有它本身的优缺点,具体如何使用还要看具体的业务需求。


整理了几百本各种技术电子书和视频课程,送给小伙伴们。同名公号【程序员内点事】内自行领取。和一些小伙伴们建了一个技术交流群,一块儿探讨技术、分享技术资料,旨在共同窗习进步,若是感兴趣就加入咱们吧!

相关文章
相关标签/搜索