在word2vec以前全部的词汇表示都是用 one hot表示
相似man这个单词以下表示markdown
他把每一个词语孤立起来,该网络若是想在下面一个句子中填入一个单词,就不会根据apple联想到orange
因此就但愿可以使用向量化的方式来表示单词:
这样Apple和Orange就会有类似的地方,在这个特征空间内会距离比较近。
并且还有这样的特性:网络
如何学习到这个词嵌入矩阵:session
咱们创建一个神经网络像上图那样用前面几个词 预测后面一个词
经过偏差反向传播就学会了 E矩阵
代码以下:app
# coding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import math import os import random import zipfile import numpy as np from six.moves import urllib from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf import pickle # Step 1: Download the data. url = 'http://mattmahoney.net/dc/' # 下载数据集 def maybe_download(filename, expected_bytes): """Download a file if not present, and make sure it's the right size.""" if not os.path.exists(filename): filename, _ = urllib.request.urlretrieve(url + filename, filename) # 获取文件相关属性 statinfo = os.stat(filename) # 比对文件的大小是否正确 if statinfo.st_size == expected_bytes: print('Found and verified', filename) else: print(statinfo.st_size) raise Exception( 'Failed to verify ' + filename + '. Can you get to it with a browser?') return filename filename = maybe_download('text8.zip', 31344016) # Read the data into a list of strings. def read_data(filename): """Extract the first file enclosed in a zip file as a list of words""" with zipfile.ZipFile(filename) as f: data = tf.compat.as_str(f.read(f.namelist()[0])).split() return data # 单词表 words = read_data(filename) # Data size print('Data size', len(words)) # Step 2: Build the dictionary and replace rare words with UNK token. # 只留50000个单词,其余的词都归为UNK vocabulary_size = 50000 def build_dataset(words, vocabulary_size): count = [['UNK', -1]] # extend追加一个列表 # Counter用来统计每一个词出现的次数 # most_common返回一个TopN列表,只留50000个单词包括UNK # c = Counter('abracadabra') # c.most_common() # [('a', 5), ('r', 2), ('b', 2), ('c', 1), ('d', 1)] # c.most_common(3) # [('a', 5), ('r', 2), ('b', 2)] # 前50000个出现次数最多的词 count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) # 生成 dictionary,词对应编号, word:id(0-49999) # 词频越高编号越小 dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) # data把数据集的词都编号 data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count += 1 data.append(index) # 记录UNK词的数量 count[0][1] = unk_count # 编号对应词的字典 reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reverse_dictionary # data 数据集,编号形式 # count 前50000个出现次数最多的词 # dictionary 词对应编号 # reverse_dictionary 编号对应词 data, count, dictionary, reverse_dictionary = build_dataset(words, vocabulary_size) del words # Hint to reduce memory. print('Most common words (+UNK)', count[:5]) print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]]) data_index = 0 # Step 3: Function to generate a training batch for the skip-gram model. def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) # [ skip_window target skip_window ] # [ skip_window target skip_window ] # [ skip_window target skip_window ] # [0 1 2 3 4 5 6 7 8 9 ...] # t i # 循环3次 for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) # 获取batch和labels for i in range(batch_size // num_skips): target = skip_window # target label at the center of the buffer targets_to_avoid = [skip_window] # 循环2次,一个目标单词对应两个上下文单词 for j in range(num_skips): while target in targets_to_avoid: # 可能先拿到前面的单词也可能先拿到后面的单词 target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) # Backtrack a little bit to avoid skipping words in the end of a batch # 回溯3个词。由于执行完一个batch的操做以后,data_index会往右多偏移span个位置 data_index = (data_index + len(data) - span) % len(data) return batch, labels # 打印sample data batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1) for i in range(8): print(batch[i], reverse_dictionary[batch[i]], '->', labels[i, 0], reverse_dictionary[labels[i, 0]]) # Step 4: Build and train a skip-gram model. batch_size = 128 # 词向量维度 embedding_size = 128 # Dimension of the embedding vector. skip_window = 1 # How many words to consider left and right. num_skips = 2 # How many times to reuse an input to generate a label. # We pick a random validation set to sample nearest neighbors. Here we limit the # validation samples to the words that have a low numeric ID, which by # construction are also the most frequent. valid_size = 16 # Random set of words to evaluate similarity on. valid_window = 100 # Only pick dev samples in the head of the distribution. # 从0-100抽取16个整数,无放回抽样 valid_examples = np.random.choice(valid_window, valid_size, replace=False) # 负采样样本数 num_sampled = 64 # Number of negative examples to sample. graph = tf.Graph() with graph.as_default(): # Input data. train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Ops and variables pinned to the CPU because of missing GPU implementation # with tf.device('/cpu:0'): # 词向量 # Look up embeddings for inputs. embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) # embedding_lookup(params,ids)其实就是按照ids顺序返回params中的第ids行 # 好比说,ids=[1,7,4],就是返回params中第1,7,4行。返回结果为由params的1,7,4行组成的tensor # 提取要训练的词 embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the noise-contrastive estimation(NCE) loss nce_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) # Compute the average NCE loss for the batch. # tf.nce_loss automatically draws a new sample of the negative labels each # time we evaluate the loss. loss = tf.reduce_mean( tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) # Construct the SGD optimizer using a learning rate of 1.0. optimizer = tf.train.GradientDescentOptimizer(1).minimize(loss) # Compute the cosine similarity between minibatch examples and all embeddings. norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm # 抽取一些经常使用词来测试余弦类似度 valid_embeddings = tf.nn.embedding_lookup( normalized_embeddings, valid_dataset) # valid_size == 16 # [16,1] * [1*50000] = [16,50000] similarity = tf.matmul( valid_embeddings, normalized_embeddings, transpose_b=True) # Add variable initializer. init = tf.global_variables_initializer() # Step 5: Begin training. num_steps = 100001 final_embeddings = [] with tf.Session(graph=graph) as session: # We must initialize all variables before we use them. init.run() print("Initialized") average_loss = 0 for step in xrange(num_steps): # 获取一个批次的target,以及对应的labels,都是编号形式的 batch_inputs, batch_labels = generate_batch( batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} # We perform one update step by evaluating the optimizer op (including it # in the list of returned values for session.run() _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += loss_val # 计算训练2000次的平均loss if step % 2000 == 0: if step > 0: average_loss /= 2000 # The average loss is an estimate of the loss over the last 2000 batches. print("Average loss at step ", step, ": ", average_loss) average_loss = 0 # Note that this is expensive (~20% slowdown if computed every 500 steps) if step % 20000 == 0: sim = similarity.eval() # 计算验证集的余弦类似度最高的词 for i in xrange(valid_size): # 根据id拿到对应单词 valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 # number of nearest neighbors # 从大到小排序,排除本身自己,取前top_k个值 nearest = (-sim[i, :]).argsort()[1:top_k + 1] log_str = "Nearest to %s:" % valid_word for k in xrange(top_k): close_word = reverse_dictionary[nearest[k]] log_str = "%s %s," % (log_str, close_word) print(log_str) # 训练结束获得的词向量 final_embeddings = normalized_embeddings.eval() # Step 6: Visualize the embeddings. def plot_with_labels(low_dim_embs, labels, filename='tsne.png'): assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings" # 设置图片大小 plt.figure(figsize=(15, 15)) # in inches for i, label in enumerate(labels): x, y = low_dim_embs[i, :] plt.scatter(x, y) plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.savefig(filename) try: from sklearn.manifold import TSNE import matplotlib.pyplot as plt tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000, method='exact')# mac:method='exact' # 画500个点 plot_only = 500 low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :]) labels = [reverse_dictionary[i] for i in xrange(plot_only)] plot_with_labels(low_dim_embs, labels) except ImportError: print("Please install sklearn, matplotlib, and scipy to visualize embeddings.")