【tf.keras】tf.keras模型复现

keras 构建模型很简单,上手很方便,同时又是 tensorflow 的高级 API,因此学学也挺好。python

模型复如今咱们的实验中也挺重要的,跑出了一个模型,虽然咱们能够将模型的 checkpoint 保存,但再跑一遍,怎么都得不到相同的结果。web

用 keras 实现模型,想要可以复现,首先须要设置各个可能的随机过程的 seed,如 np.random.seed(1)。而后分为两种状况:后端

  1. 代码不要在 GPU 上跑,而是限制在 CPU 上跑,此时能够自行设置 fit 函数的 batch_size 参数;
  2. 代码能够在 GPU 上跑,须要设置 fit 函数的参数 batch_size = 1。(当使用 tf.keras.conv2D() 时,彷佛在 GPU 上跑无法复现,最好使用第一种方式,只在 CPU 上跑。)

个人 tensorflow+keras 版本:api

print(tf.VERSION)    # '1.10.0'
print(tf.keras.__version__)    # '2.1.6-tf'

keras 模型可复现的配置:session

import numpy as np
import tensorflow as tf
import random as rn

import os
# run on CPU only, if you want to run code on GPU, you should delete the following line.
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["PYTHONHASHSEED"] = '0'

# The below is necessary for starting Numpy generated random numbers
# in a well-defined initial state.

np.random.seed(42)

# The below is necessary for starting core Python generated random numbers
# in a well-defined state.

rn.seed(12345)

# Force TensorFlow to use single thread.
# Multiple threads are a potential source of non-reproducible results.
# For further details, see: https://stackoverflow.com/questions/42022950/

session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
                              inter_op_parallelism_threads=1)

from keras import backend as K

# The below tf.set_random_seed() will make random number generation
# in the TensorFlow backend have a well-defined initial state.
# For further details, see:
# https://www.tensorflow.org/api_docs/python/tf/set_random_seed

tf.set_random_seed(1234)

sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)

# Rest of code follows ...

对于 tensorflow low-level API,即用 tf.variable_scope() 和 tf.get_variable() 自行构建 layers,一样会出现这种问题。dom

keras 文档 对此的解释是:函数

Moreover, when using the TensorFlow backend and running on a GPU, some operations have non-deterministic outputs, in particular tf.reduce_sum(). This is due to the fact that GPUs run many operations in parallel, so the order of execution is not always guaranteed. Due to the limited precision of floats, even adding several numbers together may give slightly different results depending on the order in which you add them. You can try to avoid the non-deterministic operations, but some may be created automatically by TensorFlow to compute the gradients, so it is much simpler to just run the code on the CPU.优化

而 pytorch 是怎么保证可复现:(cudnn中对卷积操做进行了优化,牺牲了精度来换取计算效率。能够看到,下面的代码强制 cudnn 产生肯定性的结果,但会牺牲效率。具体参见博客 PyTorch的可重复性问题 (如何使实验结果可复现)ui

from torch.backends import cudnn
cudnn.benchmark = False            # if benchmark=True, deterministic will be False
cudnn.deterministic = True

References

How can I obtain reproducible results using Keras during development? -- Keras Documentation
具备Tensorflow后端的Keras能够随意使用CPU或GPU吗?
PyTorch的可重复性问题 (如何使实验结果可复现)-- hyk_1996.net

相关文章
相关标签/搜索