一直以来机器学习但愿解决的一个问题就是'what if',也就是决策指导:html
这类问题之因此难以解决是由于ground truth在现实中是观测不到的,一个已经服了药的患者血压下降但咱们无从知道在同一时刻若是他没有服药血压是否是也会下降。git
这个时候作分析的同窗应该会说咱们作AB实验!咱们估计总体差别,显著就是有效,不显著就是无效。但咱们能作的只有这些么?github
固然不是!由于每一个个体都是不一样的!总体无效不意味着局部群体无效!dom
如下方法从不一样的角度尝试解决这个问题,但基本思路是一致的:咱们没法观测到每一个用户的treatment effect,但咱们能够找到一群类似用户来估计实验对他们的影响。机器学习
我会在以后的博客中,从CasualTree的第二篇Recursive partitioning for heterogeneous causal effects开始梳理下述方法中的异同。学习
整个领域还在发展中,几个开源代码都刚release不久,因此这个博客也会持续更新。若是你们看到好的文章和工程实现也欢迎在下面评论~spa
Nicholas J Radcliffe and Patrick D Surry. Real-world uplift modelling with significance based uplift trees. White Paper TR-2011-1, Stochastic Solutions, 2011.[文章连接]rest
Yan Zhao, Xiao Fang, and David Simchi-Levi. Uplift modeling with multiple treatments and general response types. Proceedings of the 2017 SIAM International Conference on Data Mining, SIAM, 2017. [文章连接] [Github连接]htm
Athey, S., and Imbens, G. W. 2015. Machine learning methods for
estimating heterogeneous causal effects. stat 1050(5) [文章连接]blog
Athey, S., and Imbens, G. 2016. Recursive partitioning for heterogeneous causal effects. Proceedings of the National Academy of
Sciences. [文章连接] [Github连接] [paper慢慢读]
C. Tran and E. Zheleva, “Learning triggers for heterogeneous treatment effects,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2019 [文章连接] [Github连接] [paper慢慢读]
M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019 [文章连接] [GitHub连接]
Sören R. Künzel, Jasjeet S. Sekhon, Peter J. Bickel, and Bin Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the National Academy of Sciences, 2019. [文章连接] [GitHub连接]