序:
LCIS即求两序列的最长公共不降低子序列。思路于LCS基本一致。c++
用dp[i][j]记录当前最大值。数组
代码实现:markdown
/* About: LCIS O(mn) Auther: kongse_qi Date:2017/04/26 */
#include <bits/stdc++.h>
#define maxn 505
using namespace std;
int n, m, a[maxn], b[maxn];
void Init()
{
scanf("%d%d", &n, &m);
for(unsigned i = 0; i != n; ++i)
{
scanf("%d", &a[i]);
}
for(unsigned i = 0; i != m; ++i)
{
scanf("%d", &b[i]);
}
return ;
}
int Lcis()
{
int maxx, dp[maxn][maxn], ans = 0;
for(unsigned i = 1; i != n+1; ++i)
{
maxx = 0;
for(unsigned j = 0; j != m; ++j)
{
dp[i][j] = dp[i-1][j];
if(a[i-1] > b[j])
{
maxx = max(dp[i-1][j], maxx);
}
if(a[i-1] == b[j])
{
dp[i][j] = maxx+1;
maxx = max(maxx, dp[i-1][j]);
}
}
}
for(unsigned i = 0; i != m; ++i)
{
ans = max(ans, dp[n][i]);
}
return ans;
}
int main()
{
//freopen("test.in", "r", stdin);
Init();
cout << Lcis();
return 0;
}
空间也是O(n^2),仔细阅读则会发现依然能够滚动数组,是空间复杂度降到O(n)。
与LCS的方式彻底一致。ui
int Lcis()
{
int maxx, dp[2][maxn], ans = 0;
memset(dp, 0, sizeof dp);
for(unsigned i = 1; i != n+1; ++i)
{
maxx = 0;
for(unsigned j = 0; j != m; ++j)
{
dp[i&1][j] = dp[(i&1)^1][j];
if(a[i-1] > b[j])
{
maxx = max(dp[(i&1)^1][j], maxx);
}
if(a[i-1] == b[j])
{
dp[i&1][j] = maxx+1;
maxx = max(maxx, dp[(i&1)^1][j]);
}
}
}
for(unsigned i = 0; i != m; ++i)
{
ans = max(ans, dp[n&1][i]);
}
return ans;
}
可是这么作要注意,当你开的数组不是全局变量的时候必定要先memset为0,不然会出现一些神奇的状况。
(第一次调用的a[(i&1)^1][j]的值是系统的随机值,可是应该是0)spa
至此结束。
箜瑟_qi 2017.04.26code