本篇文章由导学宝转自:http://www.cnblogs.com/freezee/archive/2012/02/29/2373958.html
html
What I write, what I lose.socket
以前有点时间, 从新熟悉Linux的进程间通信的东西.ide
因而想起以前项目中本身写啦个很简单的线程池. 函数
此次想从新写下.测试
主要目的是用进程间或者线程间通讯的阻塞/取消阻塞方法实现对线程池线程的等待做业和开始做业.this
算是对这些代码的一种实践.spa
以上..net
===================================================================线程
我对一个简单线程池的一些理解.code
1.建立大量的线程.
2.工做线程的执行体功能为:
while(1)
{
//按照必定条件(A)阻塞.
//按照任务的参数设置开始执行任务.
}
3.控制线程的功能为.
{
//接受新任务的参数, 通常为回调函数+参数. (为保持兼容, 我设置的格式为 (void*)(*thread_task)(void*) + void* . 跟线程建立保持形式兼容.)
//按照必定规则查找空闲的线程.
//将接受的新任务参数赋给这条线程数据体.
//解除这条线程的阻塞条件.
}
===================================================================
common-thread-pool.c 线程池主要实现+一个简单的测试代码.
接口没有拿出来.
thread-control.h 提供线程池线程的等待做业和开始做业接口.
thread-control-xxxxx.c thread-control.h的接口实现. 能够使用多种方式.
common-thread-pool.c
#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <pthread.h> #include <assert.h> #include <sys/types.h>#define DBGPRINTF_DEBUG printf#define DBGPRINTF_ERROR printf#define ASSERT assert #include "thread-control.h" typedef void*(*thread_task_func)(void* arg);/*线程执行任务的数据.*/ struct _thread_task_t { int taskid; /*任务id.*/ thread_task_func task_func; /*任务函数及参数*/ void* task_arg; }; typedef struct _thread_task_t thread_task_t;/*线程状态.*/ typedef enum { ethread_status_unknown = , ethread_status_idle , ethread_status_running , ethread_status_terminel , ethread_status_cannotuse , }thread_status_e;/*线程数据.*/ struct _thread_data_t { int thread_id; pthread_t pid; thread_status_e status; thread_task_t thread_task; THREAD_CONTROL thread_control; }; typedef struct _thread_data_t thread_data_t;/*线程池数据.*/ struct _thread_pool_t { thread_data_t* thread_data_set; int num_thread; int taskid_base; pthread_mutex_t thread_pool_lock; }; typedef struct _thread_pool_t thread_pool_t; thread_pool_t g_thread_pool;/*设置线程状态.*/ int thread_pool_setthreadstatus(thread_data_t* thread_data, thread_status_e status) { thread_pool_t* thread_pool = &g_thread_pool; pthread_mutex_lock(&(thread_pool->thread_pool_lock)); thread_data->status = status; pthread_mutex_unlock(&(thread_pool->thread_pool_lock)); return ; }/*线程池线程函数体.*/ void* thread_pool_func(void* arg) { sleep(1); //Wait pthread_t count. thread_data_t* thread_data = (thread_data_t*)arg; DBGPRINTF_DEBUG("Thread start run. Thread_id = %d, pid = 0x%x . \n", thread_data->thread_id, (unsigned int)thread_data->pid); /* Continue to wait the task, then based on new task_func and task_arg to perform this task. */ while(1) { thread_control_wait(thread_data->thread_control); //Need to lock? Yes. thread_pool_setthreadstatus(thread_data, ethread_status_running); DBGPRINTF_DEBUG("Task start. taskid = %d .\n", thread_data->thread_task.taskid); thread_data->thread_task.task_func(thread_data->thread_task.task_arg); DBGPRINTF_DEBUG("Task end. taskid = %d .\n", thread_data->thread_task.taskid); //Need to lock?Yes. thread_pool_setthreadstatus(thread_data, ethread_status_idle); } DBGPRINTF_DEBUG("Thread end run. Thread_id = %d, pid = 0x%x . \n", thread_data->thread_id, (unsigned int)thread_data->pid); }int thread_task_init(thread_task_t* thread_task) { thread_task->taskid = -1; thread_task->task_func = NULL; thread_task->task_arg = NULL; return ; }int thread_data_init(thread_data_t* thread_data) { thread_data->thread_id = -1; thread_data->pid = 0x0; thread_data->status = ethread_status_unknown , thread_task_init(&(thread_data->thread_task)); thread_control_init(&(thread_data->thread_control)); return ; }int thread_pool_create(int num_thread) { ASSERT(num_thread > && num_thread <= 10*1024); thread_pool_t* thread_pool = &g_thread_pool; int i = ; thread_pool->thread_data_set = (thread_data_t*)malloc(sizeof(thread_data_t) * num_thread); ASSERT(thread_pool->thread_data_set != NULL); thread_pool->num_thread = num_thread; thread_pool->taskid_base = -1; pthread_mutex_init(&(thread_pool->thread_pool_lock), NULL); for(i=; i<num_thread; i++) { thread_data_t* thread_data = thread_pool->thread_data_set+i; thread_data_init(thread_data); thread_data->thread_id = i; thread_data->status = ethread_status_idle; /* pthread_create set to detached. */ pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); int ret = pthread_create(&(thread_data->pid), &attr, thread_pool_func, thread_data); if(ret != ) { DBGPRINTF_DEBUG("pthread_create error[%d].\n", i); break; } } sleep(2); return ; }void* test_func(void* arg) { int t_sleep = (int)arg; DBGPRINTF_DEBUG("Test func. Sleep %d .\n", t_sleep); /* int a[2048*1024] = {0}; int i = 0; for(i=0; i<2028*1024; i++) { a[i] = i*i; } DBGPRINTF_DEBUG("a[0]=%d. \n", a[0]); */ sleep(t_sleep); DBGPRINTF_DEBUG("Test func finished. \n"); return NULL; }/*查询可接收任务的线程.*/ int thread_pool_queryfree(thread_data_t** thread_data_found) { *thread_data_found = NULL; thread_pool_t* thread_pool = &g_thread_pool; pthread_mutex_lock(&(thread_pool->thread_pool_lock)); int i = ; for(i=; i<thread_pool->num_thread; i++) { thread_data_t* thread_data = thread_pool->thread_data_set+i; if(thread_data->status == ethread_status_idle) { *thread_data_found = thread_data; break; } } pthread_mutex_unlock(&(thread_pool->thread_pool_lock)); return ; }/*分配taskid.*/ int thread_pool_gettaskid(int* taskid) { thread_pool_t* thread_pool = &g_thread_pool; pthread_mutex_lock(&(thread_pool->thread_pool_lock)); thread_pool->taskid_base ++; *taskid = thread_pool->taskid_base; pthread_mutex_unlock(&(thread_pool->thread_pool_lock)); return ; }/*向线程池增长任务.*/ int thread_pool_addtask(thread_task_func task_func, void* arg) { /* Find a free thread. */ thread_data_t* thread_data_found = NULL; thread_pool_queryfree(&thread_data_found); if(thread_data_found != NULL) { DBGPRINTF_DEBUG("Thread [%d] perferm this task.\n", thread_data_found->thread_id); /* Set task data. */ thread_data_found->thread_task.task_func = task_func; thread_data_found->thread_task.task_arg = arg; thread_pool_gettaskid(&(thread_data_found->thread_task.taskid)); /* Start the task. */ thread_pool_setthreadstatus(thread_data_found, ethread_status_running); thread_control_start(thread_data_found->thread_control); DBGPRINTF_DEBUG("Thread [%d] Add task[%d] finished.\n", thread_data_found->thread_id, thread_data_found->thread_task.taskid); } else { DBGPRINTF_ERROR("Thread pool full. Task not added.\n"); } return ; }int main() { thread_pool_create(10); //thread_pool_create(10); thread_pool_addtask(test_func, (void*)(1<<)); thread_pool_addtask(test_func, (void*)(1<<1)); thread_pool_addtask(test_func, (void*)(1<<2)); thread_pool_addtask(test_func, (void*)(1<<3)); thread_pool_addtask(test_func, (void*)(1<<4)); thread_pool_addtask(test_func, (void*)(1<<5)); thread_pool_addtask(test_func, (void*)(1<<6)); thread_pool_addtask(test_func, (void*)(1<<7)); sleep(6); thread_pool_addtask(test_func, (void*)(1<<)); thread_pool_addtask(test_func, (void*)(1<<1)); thread_pool_addtask(test_func, (void*)(1<<2)); thread_pool_addtask(test_func, (void*)(1<<3)); thread_pool_addtask(test_func, (void*)(1<<4)); thread_pool_addtask(test_func, (void*)(1<<5)); thread_pool_addtask(test_func, (void*)(1<<6)); thread_pool_addtask(test_func, (void*)(1<<7)); sleep(100000); return ; }
thread-control.h
#define THREAD_CONTROL void*int thread_control_init(THREAD_CONTROL* thread_control);int thread_control_deinit(THREAD_CONTROL* thread_control);int thread_control_wait(THREAD_CONTROL thread_control);int thread_control_start(THREAD_CONTROL thread_control);
thread-control.h的接口实现. 能够使用多种方式.
只要进程间通讯/线程间通讯中存在阻塞等待/解除阻塞等待的均可以拿来做实验.
好比:条件变量.
thread-control-condition.c
#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <pthread.h> #include <assert.h> #include <sys/types.h>#define DBGPRINTF_DEBUG printf#define DBGPRINTF_ERROR printf#define ASSERT assert #include "thread-control.h" struct _thread_control_cond_t { pthread_mutex_t lock; pthread_cond_t condition; }; typedef struct _thread_control_cond_t thread_control_cond_t;int thread_control_init(THREAD_CONTROL* thread_control) { *thread_control = NULL; thread_control_cond_t* cond = (thread_control_cond_t*)malloc(sizeof(thread_control_cond_t)); assert(cond != NULL); pthread_mutex_init(&(cond->lock), NULL); pthread_cond_init(&(cond->condition), NULL); *thread_control = cond; return ; }int thread_control_deinit(THREAD_CONTROL* thread_control) { thread_control_cond_t* cond = (thread_control_cond_t*)(*thread_control); pthread_mutex_destroy(&(cond->lock)); pthread_cond_destroy(&(cond->condition)); free(cond); *thread_control = NULL; return ; }int thread_control_wait(THREAD_CONTROL thread_control) { thread_control_cond_t* cond = (thread_control_cond_t*)(thread_control); //Wait pthread condition. pthread_mutex_lock(&(cond->lock)); pthread_cond_wait(&(cond->condition), &(cond->lock)); pthread_mutex_unlock(&(cond->lock)); return ; }int thread_control_start(THREAD_CONTROL thread_control) { thread_control_cond_t* cond = (thread_control_cond_t*)(thread_control); //start pthread condition. pthread_mutex_lock(&(cond->lock)); pthread_cond_signal(&(cond->condition)); pthread_mutex_unlock(&(cond->lock)); return ; }
好比:有名管道.
thread-control-fifopipe.c
#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <pthread.h> #include <assert.h> #include <fcntl.h> #include <sys/types.h> #include <sys/stat.h>#define DBGPRINTF_DEBUG printf#define DBGPRINTF_ERROR printf#define ASSERT assert #include "thread-control.h" static int path_index = ;#define LEN_CMD_PATH 10struct _fifopipe_control_t { char fifopipe_cmd_path[LEN_CMD_PATH]; }; typedef struct _fifopipe_control_t fifopipe_control_t;int thread_control_init(THREAD_CONTROL* thread_control) { *thread_control = NULL; fifopipe_control_t* fifopipe_control = (fifopipe_control_t*)malloc(sizeof(fifopipe_control_t)); assert(fifopipe_control != NULL); path_index ++; snprintf(fifopipe_control->fifopipe_cmd_path, LEN_CMD_PATH, "./xxx%d", path_index); int ret = mkfifo(fifopipe_control->fifopipe_cmd_path, 0666/*(O_CREAT | O_RDWR)*/); assert(ret == ); *thread_control = fifopipe_control; return ; }int thread_control_deinit(THREAD_CONTROL* thread_control) { fifopipe_control_t* fifopipe_control = (fifopipe_control_t*)(*thread_control); free(fifopipe_control); *thread_control = NULL; return ; }int thread_control_wait(THREAD_CONTROL thread_control) { fifopipe_control_t* fifopipe_control = (fifopipe_control_t*)(thread_control); int fd = open(fifopipe_control->fifopipe_cmd_path, O_RDONLY, ); assert(fd>); char tmp = ; read(fd, &tmp, 1); return ; }int thread_control_start(THREAD_CONTROL thread_control) { fifopipe_control_t* fifopipe_control = (fifopipe_control_t*)(thread_control); int fd = open(fifopipe_control->fifopipe_cmd_path, O_WRONLY, ); assert(fd>); char tmp = ; write(fd, &tmp, 1); return ; }
好比:管道, 消息队列, socket, while(condition?){sleep}等等.
以上代码中, 注释的比较少.
差很少.其实我都有点不知道本身在写什么.