本阶段主要针对C++面向对象编程技术作详细讲解,探讨C++中的核心和精髓。ios
C++程序在执行时,将内存大方向划分为4个区域c++
内存四区意义:程序员
不一样区域存放的数据,赋予不一样的生命周期, 给咱们更大的灵活编程面试
在程序编译后,生成了exe可执行程序,未执行该程序前分为两个区域编程
代码区:数组
存放 CPU 执行的机器指令安全
代码区是共享的,共享的目的是对于频繁被执行的程序,只须要在内存中有一份代码便可架构
代码区是只读的,使其只读的缘由是防止程序意外地修改了它的指令app
全局区:ide
全局变量和静态变量存放在此.
全局区还包含了常量区, 字符串常量和其余常量也存放在此.
该区域的数据在程序结束后由操做系统释放.
示例:
//全局变量 int g_a = 10; int g_b = 10; //全局常量 const int c_g_a = 10; const int c_g_b = 10; int main() { //局部变量 int a = 10; int b = 10; //打印地址 cout << "局部变量a地址为: " << (int)&a << endl; cout << "局部变量b地址为: " << (int)&b << endl; cout << "全局变量g_a地址为: " << (int)&g_a << endl; cout << "全局变量g_b地址为: " << (int)&g_b << endl; //静态变量 static int s_a = 10; static int s_b = 10; cout << "静态变量s_a地址为: " << (int)&s_a << endl; cout << "静态变量s_b地址为: " << (int)&s_b << endl; cout << "字符串常量地址为: " << (int)&"hello world" << endl; cout << "字符串常量地址为: " << (int)&"hello world1" << endl; cout << "全局常量c_g_a地址为: " << (int)&c_g_a << endl; cout << "全局常量c_g_b地址为: " << (int)&c_g_b << endl; const int c_l_a = 10; const int c_l_b = 10; cout << "局部常量c_l_a地址为: " << (int)&c_l_a << endl; cout << "局部常量c_l_b地址为: " << (int)&c_l_b << endl; system("pause"); return 0; }
打印结果:

总结:
栈区:
由编译器自动分配释放, 存放函数的参数值,局部变量等
注意事项:不要返回局部变量的地址,栈区开辟的数据由编译器自动释放
示例:
int * func() { int a = 10; return &a; } int main() { int *p = func(); cout << *p << endl; cout << *p << endl; system("pause"); return 0; }
堆区:
由程序员分配释放,若程序员不释放,程序结束时由操做系统回收
在C++中主要利用new在堆区开辟内存
示例:
int* func() { int* a = new int(10); return a; } int main() { int *p = func(); cout << *p << endl; cout << *p << endl; system("pause"); return 0; }
总结:
堆区数据由程序员管理开辟和释放
堆区数据利用new关键字进行开辟内存
C++中利用new操做符在堆区开辟数据
堆区开辟的数据,由程序员手动开辟,手动释放,释放利用操做符 delete
语法: new 数据类型
利用new建立的数据,会返回该数据对应的类型的指针
示例1: 基本语法
int* func() { int* a = new int(10); return a; } int main() { int *p = func(); cout << *p << endl; cout << *p << endl; //利用delete释放堆区数据 delete p; //cout << *p << endl; //报错,释放的空间不可访问 system("pause"); return 0; }
示例2:开辟数组
//堆区开辟数组 int main() { int* arr = new int[10]; for (int i = 0; i < 10; i++) { arr[i] = i + 100; } for (int i = 0; i < 10; i++) { cout << arr[i] << endl; } //释放数组 delete 后加 [] delete[] arr; system("pause"); return 0; }
**做用: **给变量起别名
语法: 数据类型 &别名 = 原名
示例:
int main() { int a = 10; int &b = a; cout << "a = " << a << endl; cout << "b = " << b << endl; b = 100; cout << "a = " << a << endl; cout << "b = " << b << endl; system("pause"); return 0; }
示例:
int main() { int a = 10; int b = 20; //int &c; //错误,引用必须初始化 int &c = a; //一旦初始化后,就不能够更改 c = b; //这是赋值操做,不是更改引用 cout << "a = " << a << endl; cout << "b = " << b << endl; cout << "c = " << c << endl; system("pause"); return 0; }
做用:函数传参时,能够利用引用的技术让形参修饰实参
优势:能够简化指针修改实参
示例:
//1. 值传递 void mySwap01(int a, int b) { int temp = a; a = b; b = temp; } //2. 地址传递 void mySwap02(int* a, int* b) { int temp = *a; *a = *b; *b = temp; } //3. 引用传递 void mySwap03(int& a, int& b) { int temp = a; a = b; b = temp; } int main() { int a = 10; int b = 20; mySwap01(a, b); cout << "a:" << a << " b:" << b << endl; mySwap02(&a, &b); cout << "a:" << a << " b:" << b << endl; mySwap03(a, b); cout << "a:" << a << " b:" << b << endl; system("pause"); return 0; }
总结:经过引用参数产生的效果同按地址传递是同样的。引用的语法更清楚简单
做用:引用是能够做为函数的返回值存在的
注意:不要返回局部变量引用
用法:函数调用做为左值
示例:
//返回局部变量引用 int& test01() { int a = 10; //局部变量 return a; } //返回静态变量引用 int& test02() { static int a = 20; return a; } int main() { //不能返回局部变量的引用 int& ref = test01(); cout << "ref = " << ref << endl; cout << "ref = " << ref << endl; //若是函数作左值,那么必须返回引用 int& ref2 = test02(); cout << "ref2 = " << ref2 << endl; cout << "ref2 = " << ref2 << endl; test02() = 1000; cout << "ref2 = " << ref2 << endl; cout << "ref2 = " << ref2 << endl; system("pause"); return 0; }
本质:引用的本质在c++内部实现是一个指针常量.
讲解示例:
//发现是引用,转换为 int* const ref = &a; void func(int& ref){ ref = 100; // ref是引用,转换为*ref = 100 } int main(){ int a = 10; //自动转换为 int* const ref = &a; 指针常量是指针指向不可改,也说明为何引用不可更改 int& ref = a; ref = 20; //内部发现ref是引用,自动帮咱们转换为: *ref = 20; cout << "a:" << a << endl; cout << "ref:" << ref << endl; func(a); return 0; }
结论:C++推荐用引用技术,由于语法方便,引用本质是指针常量,可是全部的指针操做编译器都帮咱们作了
做用:常量引用主要用来修饰形参,防止误操做
在函数形参列表中,能够加const修饰形参,防止形参改变实参
示例:
//引用使用的场景,一般用来修饰形参 void showValue(const int& v) { //v += 10; cout << v << endl; } int main() { //int& ref = 10; 引用自己须要一个合法的内存空间,所以这行错误 //加入const就能够了,编译器优化代码,int temp = 10; const int& ref = temp; const int& ref = 10; //ref = 100; //加入const后不能够修改变量 cout << ref << endl; //函数中利用常量引用防止误操做修改实参 int a = 10; showValue(a); system("pause"); return 0; }
在C++中,函数的形参列表中的形参是能够有默认值的。
语法: 返回值类型 函数名 (参数= 默认值){}
示例:
int func(int a, int b = 10, int c = 10) { return a + b + c; } //1. 若是某个位置参数有默认值,那么从这个位置日后,从左向右,必须都要有默认值 //2. 若是函数声明有默认值,函数实现的时候就不能有默认参数 int func2(int a = 10, int b = 10); int func2(int a, int b) { return a + b; } int main() { cout << "ret = " << func(20, 20) << endl; cout << "ret = " << func(100) << endl; system("pause"); return 0; }
C++中函数的形参列表里能够有占位参数,用来作占位,调用函数时必须填补该位置
语法: 返回值类型 函数名 (数据类型){}
在现阶段函数的占位参数存在乎义不大,可是后面的课程中会用到该技术
示例:
//函数占位参数 ,占位参数也能够有默认参数 void func(int a, int) { cout << "this is func" << endl; } int main() { func(10,10); //占位参数必须填补 system("pause"); return 0; }
做用:函数名能够相同,提升复用性
函数重载知足条件:
注意: 函数的返回值不能够做为函数重载的条件
示例:
//函数重载须要函数都在同一个做用域下 void func() { cout << "func 的调用!" << endl; } void func(int a) { cout << "func (int a) 的调用!" << endl; } void func(double a) { cout << "func (double a)的调用!" << endl; } void func(int a ,double b) { cout << "func (int a ,double b) 的调用!" << endl; } void func(double a ,int b) { cout << "func (double a ,int b)的调用!" << endl; } //函数返回值不能够做为函数重载条件 //int func(double a, int b) //{ // cout << "func (double a ,int b)的调用!" << endl; //} int main() { func(); func(10); func(3.14); func(10,3.14); func(3.14 , 10); system("pause"); return 0; }
示例:
//函数重载注意事项 //一、引用做为重载条件 void func(int &a) { cout << "func (int &a) 调用 " << endl; } void func(const int &a) { cout << "func (const int &a) 调用 " << endl; } //二、函数重载碰到函数默认参数 void func2(int a, int b = 10) { cout << "func2(int a, int b = 10) 调用" << endl; } void func2(int a) { cout << "func2(int a) 调用" << endl; } int main() { int a = 10; func(a); //调用无const func(10);//调用有const //func2(10); //碰到默认参数产生歧义,须要避免 system("pause"); return 0; }
C++面向对象的三大特性为:封装、继承、多态
C++认为万事万物都皆为对象,对象上有其属性和行为
例如:
人能够做为对象,属性有姓名、年龄、身高、体重...,行为有走、跑、跳、吃饭、唱歌...
车也能够做为对象,属性有轮胎、方向盘、车灯...,行为有载人、放音乐、放空调...
具备相同性质的对象,咱们能够抽象称为类,人属于人类,车属于车类
封装是C++面向对象三大特性之一
封装的意义:
封装意义一:
在设计类的时候,属性和行为写在一块儿,表现事物
语法: class 类名{ 访问权限: 属性 / 行为 };
示例1:设计一个圆类,求圆的周长
示例代码:
//圆周率 const double PI = 3.14; //一、封装的意义 //将属性和行为做为一个总体,用来表现生活中的事物 //封装一个圆类,求圆的周长 //class表明设计一个类,后面跟着的是类名 class Circle { public: //访问权限 公共的权限 //属性 int m_r;//半径 //行为 //获取到圆的周长 double calculateZC() { //2 * pi * r //获取圆的周长 return 2 * PI * m_r; } }; int main() { //经过圆类,建立圆的对象 // c1就是一个具体的圆 Circle c1; c1.m_r = 10; //给圆对象的半径 进行赋值操做 //2 * pi * 10 = = 62.8 cout << "圆的周长为: " << c1.calculateZC() << endl; system("pause"); return 0; }
示例2:设计一个学生类,属性有姓名和学号,能够给姓名和学号赋值,能够显示学生的姓名和学号
示例2代码:
//学生类 class Student { public: void setName(string name) { m_name = name; } void setID(int id) { m_id = id; } void showStudent() { cout << "name:" << m_name << " ID:" << m_id << endl; } public: string m_name; int m_id; }; int main() { Student stu; stu.setName("德玛西亚"); stu.setID(250); stu.showStudent(); system("pause"); return 0; }
封装意义二:
类在设计时,能够把属性和行为放在不一样的权限下,加以控制
访问权限有三种:
示例:
//三种权限 //公共权限 public 类内能够访问 类外能够访问 //保护权限 protected 类内能够访问 类外不能够访问 //私有权限 private 类内能够访问 类外不能够访问 class Person { //姓名 公共权限 public: string m_Name; //汽车 保护权限 protected: string m_Car; //银行卡密码 私有权限 private: int m_Password; public: void func() { m_Name = "张三"; m_Car = "拖拉机"; m_Password = 123456; } }; int main() { Person p; p.m_Name = "李四"; //p.m_Car = "奔驰"; //保护权限类外访问不到 //p.m_Password = 123; //私有权限类外访问不到 system("pause"); return 0; }
在C++中 struct和class惟一的区别就在于 默认的访问权限不一样
区别:
class C1 { int m_A; //默认是私有权限 }; struct C2 { int m_A; //默认是公共权限 }; int main() { C1 c1; c1.m_A = 10; //错误,访问权限是私有 C2 c2; c2.m_A = 10; //正确,访问权限是公共 system("pause"); return 0; }
优势1:将全部成员属性设置为私有,能够本身控制读写权限
优势2:对于写权限,咱们能够检测数据的有效性
示例:
class Person { public: //姓名设置可读可写 void setName(string name) { m_Name = name; } string getName() { return m_Name; } //获取年龄 int getAge() { return m_Age; } //设置年龄 void setAge(int age) { if (age < 0 || age > 150) { cout << "你个老妖精!" << endl; return; } m_Age = age; } //情人设置为只写 void setLover(string lover) { m_Lover = lover; } private: string m_Name; //可读可写 姓名 int m_Age; //只读 年龄 string m_Lover; //只写 情人 }; int main() { Person p; //姓名设置 p.setName("张三"); cout << "姓名: " << p.getName() << endl; //年龄设置 p.setAge(50); cout << "年龄: " << p.getAge() << endl; //情人设置 p.setLover("苍井"); //cout << "情人: " << p.m_Lover << endl; //只写属性,不能够读取 system("pause"); return 0; }
练习案例1:设计立方体类
设计立方体类(Cube)
求出立方体的面积和体积
分别用全局函数和成员函数判断两个立方体是否相等。

练习案例2:点和圆的关系
设计一个圆形类(Circle),和一个点类(Point),计算点和圆的关系。

对象的初始化和清理也是两个很是重要的安全问题
一个对象或者变量没有初始状态,对其使用后果是未知
一样的使用完一个对象或变量,没有及时清理,也会形成必定的安全问题
c++利用了构造函数和析构函数解决上述问题,这两个函数将会被编译器自动调用,完成对象初始化和清理工做。
对象的初始化和清理工做是编译器强制要咱们作的事情,所以若是咱们不提供构造和析构,编译器会提供
编译器提供的构造函数和析构函数是空实现。
构造函数语法:类名(){}
析构函数语法: ~类名(){}
class Person { public: //构造函数 Person() { cout << "Person的构造函数调用" << endl; } //析构函数 ~Person() { cout << "Person的析构函数调用" << endl; } }; void test01() { Person p; } int main() { test01(); system("pause"); return 0; }
两种分类方式:
按参数分为: 有参构造和无参构造
按类型分为: 普通构造和拷贝构造
三种调用方式:
括号法
显示法
隐式转换法
示例:
//一、构造函数分类 // 按照参数分类分为 有参和无参构造 无参又称为默认构造函数 // 按照类型分类分为 普通构造和拷贝构造 class Person { public: //无参(默认)构造函数 Person() { cout << "无参构造函数!" << endl; } //有参构造函数 Person(int a) { age = a; cout << "有参构造函数!" << endl; } //拷贝构造函数 Person(const Person& p) { age = p.age; cout << "拷贝构造函数!" << endl; } //析构函数 ~Person() { cout << "析构函数!" << endl; } public: int age; }; //二、构造函数的调用 //调用无参构造函数 void test01() { Person p; //调用无参构造函数 } //调用有参的构造函数 void test02() { //2.1 括号法,经常使用 Person p1(10); //注意1:调用无参构造函数不能加括号,若是加了编译器认为这是一个函数声明 //Person p2(); //2.2 显式法 Person p2 = Person(10); Person p3 = Person(p2); //Person(10)单独写就是匿名对象 当前行结束以后,立刻析构 //2.3 隐式转换法 Person p4 = 10; // Person p4 = Person(10); Person p5 = p4; // Person p5 = Person(p4); //注意2:不能利用 拷贝构造函数 初始化匿名对象 编译器认为是对象声明 //Person p5(p4); } int main() { test01(); //test02(); system("pause"); return 0; }
C++中拷贝构造函数调用时机一般有三种状况
示例:
class Person { public: Person() { cout << "无参构造函数!" << endl; mAge = 0; } Person(int age) { cout << "有参构造函数!" << endl; mAge = age; } Person(const Person& p) { cout << "拷贝构造函数!" << endl; mAge = p.mAge; } //析构函数在释放内存以前调用 ~Person() { cout << "析构函数!" << endl; } public: int mAge; }; //1. 使用一个已经建立完毕的对象来初始化一个新对象 void test01() { Person man(100); //p对象已经建立完毕 Person newman(man); //调用拷贝构造函数 Person newman2 = man; //拷贝构造 //Person newman3; //newman3 = man; //不是调用拷贝构造函数,赋值操做 } //2. 值传递的方式给函数参数传值 //至关于Person p1 = p; void doWork(Person p1) {} void test02() { Person p; //无参构造函数 doWork(p); } //3. 以值方式返回局部对象 Person doWork2() { Person p1; cout << (int *)&p1 << endl; return p1; } void test03() { Person p = doWork2(); cout << (int *)&p << endl; } int main() { //test01(); //test02(); test03(); system("pause"); return 0; }
默认状况下,c++编译器至少给一个类添加3个函数
1.默认构造函数(无参,函数体为空)
2.默认析构函数(无参,函数体为空)
3.默认拷贝构造函数,对属性进行值拷贝
构造函数调用规则以下:
若是用户定义有参构造函数,c++不在提供默认无参构造,可是会提供默认拷贝构造
若是用户定义拷贝构造函数,c++不会再提供其余构造函数
示例:
class Person { public: //无参(默认)构造函数 Person() { cout << "无参构造函数!" << endl; } //有参构造函数 Person(int a) { age = a; cout << "有参构造函数!" << endl; } //拷贝构造函数 Person(const Person& p) { age = p.age; cout << "拷贝构造函数!" << endl; } //析构函数 ~Person() { cout << "析构函数!" << endl; } public: int age; }; void test01() { Person p1(18); //若是不写拷贝构造,编译器会自动添加拷贝构造,而且作浅拷贝操做 Person p2(p1); cout << "p2的年龄为: " << p2.age << endl; } void test02() { //若是用户提供有参构造,编译器不会提供默认构造,会提供拷贝构造 Person p1; //此时若是用户本身没有提供默认构造,会出错 Person p2(10); //用户提供的有参 Person p3(p2); //此时若是用户没有提供拷贝构造,编译器会提供 //若是用户提供拷贝构造,编译器不会提供其余构造函数 Person p4; //此时若是用户本身没有提供默认构造,会出错 Person p5(10); //此时若是用户本身没有提供有参,会出错 Person p6(p5); //用户本身提供拷贝构造 } int main() { test01(); system("pause"); return 0; }
深浅拷贝是面试经典问题,也是常见的一个坑
浅拷贝:简单的赋值拷贝操做
深拷贝:在堆区从新申请空间,进行拷贝操做
示例:
class Person { public: //无参(默认)构造函数 Person() { cout << "无参构造函数!" << endl; } //有参构造函数 Person(int age ,int height) { cout << "有参构造函数!" << endl; m_age = age; m_height = new int(height); } //拷贝构造函数 Person(const Person& p) { cout << "拷贝构造函数!" << endl; //若是不利用深拷贝在堆区建立新内存,会致使浅拷贝带来的重复释放堆区问题 m_age = p.m_age; m_height = new int(*p.m_height); } //析构函数 ~Person() { cout << "析构函数!" << endl; if (m_height != NULL) { delete m_height; } } public: int m_age; int* m_height; }; void test01() { Person p1(18, 180); Person p2(p1); cout << "p1的年龄: " << p1.m_age << " 身高: " << *p1.m_height << endl; cout << "p2的年龄: " << p2.m_age << " 身高: " << *p2.m_height << endl; } int main() { test01(); system("pause"); return 0; }
总结:若是属性有在堆区开辟的,必定要本身提供拷贝构造函数,防止浅拷贝带来的问题
做用:
C++提供了初始化列表语法,用来初始化属性
语法:构造函数():属性1(值1),属性2(值2)... {}
示例:
class Person { public: ////传统方式初始化 //Person(int a, int b, int c) { // m_A = a; // m_B = b; // m_C = c; //} //初始化列表方式初始化 Person(int a, int b, int c) :m_A(a), m_B(b), m_C(c) {} void PrintPerson() { cout << "mA:" << m_A << endl; cout << "mB:" << m_B << endl; cout << "mC:" << m_C << endl; } private: int m_A; int m_B; int m_C; }; int main() { Person p(1, 2, 3); p.PrintPerson(); system("pause"); return 0; }
C++类中的成员能够是另外一个类的对象,咱们称该成员为 对象成员
例如:
class A {} class B { A a; }
B类中有对象A做为成员,A为对象成员
那么当建立B对象时,A与B的构造和析构的顺序是谁先谁后?
示例:
class Phone { public: Phone(string name) { m_PhoneName = name; cout << "Phone构造" << endl; } ~Phone() { cout << "Phone析构" << endl; } string m_PhoneName; }; class Person { public: //初始化列表能够告诉编译器调用哪个构造函数 Person(string name, string pName) :m_Name(name), m_Phone(pName) { cout << "Person构造" << endl; } ~Person() { cout << "Person析构" << endl; } void playGame() { cout << m_Name << " 使用" << m_Phone.m_PhoneName << " 牌手机! " << endl; } string m_Name; Phone m_Phone; }; void test01() { //当类中成员是其余类对象时,咱们称该成员为 对象成员 //构造的顺序是 :先调用对象成员的构造,再调用本类构造 //析构顺序与构造相反 Person p("张三" , "苹果X"); p.playGame(); } int main() { test01(); system("pause"); return 0; }
静态成员就是在成员变量和成员函数前加上关键字static,称为静态成员
静态成员分为:
示例1 :静态成员变量
class Person { public: static int m_A; //静态成员变量 //静态成员变量特色: //1 在编译阶段分配内存 //2 类内声明,类外初始化 //3 全部对象共享同一份数据 private: static int m_B; //静态成员变量也是有访问权限的 }; int Person::m_A = 10; int Person::m_B = 10; void test01() { //静态成员变量两种访问方式 //一、经过对象 Person p1; p1.m_A = 100; cout << "p1.m_A = " << p1.m_A << endl; Person p2; p2.m_A = 200; cout << "p1.m_A = " << p1.m_A << endl; //共享同一份数据 cout << "p2.m_A = " << p2.m_A << endl; //二、经过类名 cout << "m_A = " << Person::m_A << endl; //cout << "m_B = " << Person::m_B << endl; //私有权限访问不到 } int main() { test01(); system("pause"); return 0; }
示例2:静态成员函数
class Person { public: //静态成员函数特色: //1 程序共享一个函数 //2 静态成员函数只能访问静态成员变量 static void func() { cout << "func调用" << endl; m_A = 100; //m_B = 100; //错误,不能够访问非静态成员变量 } static int m_A; //静态成员变量 int m_B; // private: //静态成员函数也是有访问权限的 static void func2() { cout << "func2调用" << endl; } }; int Person::m_A = 10; void test01() { //静态成员变量两种访问方式 //一、经过对象 Person p1; p1.func(); //二、经过类名 Person::func(); //Person::func2(); //私有权限访问不到 } int main() { test01(); system("pause"); return 0; }
在C++中,类内的成员变量和成员函数分开存储
只有非静态成员变量才属于类的对象上
class Person { public: Person() { mA = 0; } //非静态成员变量占对象空间 int mA; //静态成员变量不占对象空间 static int mB; //函数也不占对象空间,全部函数共享一个函数实例 void func() { cout << "mA:" << this->mA << endl; } //静态成员函数也不占对象空间 static void sfunc() { } }; int main() { cout << sizeof(Person) << endl; system("pause"); return 0; }
经过4.3.1咱们知道在C++中成员变量和成员函数是分开存储的
每个非静态成员函数只会诞生一份函数实例,也就是说多个同类型的对象会共用一块代码
那么问题是:这一块代码是如何区分那个对象调用本身的呢?
c++经过提供特殊的对象指针,this指针,解决上述问题。this指针指向被调用的成员函数所属的对象
this指针是隐含每个非静态成员函数内的一种指针
this指针不须要定义,直接使用便可
this指针的用途:
class Person { public: Person(int age) { //一、当形参和成员变量同名时,可用this指针来区分 this->age = age; } Person& PersonAddPerson(Person p)//若是以值的形式返回局部对象,会调用拷贝构造函数,拷贝构造一份新的数据出来,到函数调用的时候已是p2数据的复制 { this->age += p.age; //返回对象自己 return *this; } int age; }; void test01() { Person p1(10); cout << "p1.age = " << p1.age << endl; Person p2(10); p2.PersonAddPerson(p1).PersonAddPerson(p1).PersonAddPerson(p1); cout << "p2.age = " << p2.age << endl; } int main() { test01(); system("pause"); return 0; }
C++中空指针也是能够调用成员函数的,可是也要注意有没有用到this指针
若是用到this指针,须要加以判断保证代码的健壮性
示例:
//空指针访问成员函数 class Person { public: void ShowClassName() { cout << "我是Person类!" << endl; } void ShowPerson() { if (this == NULL) { return; } cout << mAge << endl; } /*void showAge() { cout<<"年龄为:"<<mAge<<endl; }*/ public: int mAge; }; void test01() { Person * p = NULL; p->ShowClassName(); //空指针,能够调用成员函数 p->ShowPerson(); //可是若是成员函数中用到了this指针,就不能够了 } int main() { test01(); system("pause"); return 0; }
常函数:
常对象:
示例:
class Person { public: Person() { m_A = 0; m_B = 0; } //this指针的本质是一个指针常量,指针的指向不可修改 //若是想让指针指向的值也不能够修改,须要声明常函数 void ShowPerson() const { //const Type* const pointer; //this = NULL; //不能修改指针的指向 Person* const this; //this->mA = 100; //可是this指针指向的对象的数据是能够修改的 //const修饰成员函数,表示指针指向的内存空间的数据不能修改,除了mutable修饰的变量 this->m_B = 100; } void MyFunc() const { //mA = 10000; } public: int m_A; mutable int m_B; //可修改 可变的 }; //const修饰对象 常对象 void test01() { const Person person; //常量对象 cout << person.m_A << endl; //person.mA = 100; //常对象不能修改为员变量的值,可是能够访问 person.m_B = 100; //可是常对象能够修改mutable修饰成员变量 //常对象访问成员函数 person.MyFunc(); //常对象不能调用const的函数 } int main() { test01(); system("pause"); return 0; }
生活中你的家有客厅(Public),有你的卧室(Private)
客厅全部来的客人均可以进去,可是你的卧室是私有的,也就是说只有你能进去
可是呢,你也能够容许你的好闺蜜好基友进去。
在程序里,有些私有属性 也想让类外特殊的一些函数或者类进行访问,就须要用到友元的技术
友元的目的就是让一个函数或者类 访问另外一个类中私有成员
友元的关键字为 friend
友元的三种实现
class Building { //告诉编译器 goodGay全局函数 是 Building类的好朋友,能够访问类中的私有内容 friend void goodGay(Building * building); public: Building() { this->m_SittingRoom = "客厅"; this->m_BedRoom = "卧室"; } public: string m_SittingRoom; //客厅 private: string m_BedRoom; //卧室 }; void goodGay(Building * building) { cout << "好基友正在访问: " << building->m_SittingRoom << endl; cout << "好基友正在访问: " << building->m_BedRoom << endl; } void test01() { Building b; goodGay(&b); } int main(){ test01(); system("pause"); return 0; }
class Building; class goodGay { public: goodGay(); void visit(); private: Building *building; }; class Building { //告诉编译器 goodGay类是Building类的好朋友,能够访问到Building类中私有内容 friend class goodGay; public: Building(); public: string m_SittingRoom; //客厅 private: string m_BedRoom;//卧室 }; Building::Building() { this->m_SittingRoom = "客厅"; this->m_BedRoom = "卧室"; } goodGay::goodGay() { building = new Building; } void goodGay::visit() { cout << "好基友正在访问" << building->m_SittingRoom << endl; cout << "好基友正在访问" << building->m_BedRoom << endl; } void test01() { goodGay gg; gg.visit(); } int main(){ test01(); system("pause"); return 0; }
class Building; class goodGay { public: goodGay(); void visit(); //只让visit函数做为Building的好朋友,能够发访问Building中私有内容 void visit2(); private: Building *building; }; class Building { //告诉编译器 goodGay类中的visit成员函数 是Building好朋友,能够访问私有内容 friend void goodGay::visit(); public: Building(); public: string m_SittingRoom; //客厅 private: string m_BedRoom;//卧室 }; Building::Building() { this->m_SittingRoom = "客厅"; this->m_BedRoom = "卧室"; } goodGay::goodGay() { building = new Building; } void goodGay::visit() { cout << "好基友正在访问" << building->m_SittingRoom << endl; cout << "好基友正在访问" << building->m_BedRoom << endl; } void goodGay::visit2() { cout << "好基友正在访问" << building->m_SittingRoom << endl; //cout << "好基友正在访问" << building->m_BedRoom << endl; } void test01() { goodGay gg; gg.visit(); } int main(){ test01(); system("pause"); return 0; }
运算符重载概念:对已有的运算符从新进行定义,赋予其另外一种功能,以适应不一样的数据类型
做用:实现两个自定义数据类型相加的运算
class Person { public: Person() {}; Person(int a, int b) { this->m_A = a; this->m_B = b; } //成员函数实现 + 号运算符重载 Person operator+(const Person& p) { Person temp; temp.m_A = this->m_A + p.m_A; temp.m_B = this->m_B + p.m_B; return temp; } public: int m_A; int m_B; }; //全局函数实现 + 号运算符重载 //Person operator+(const Person& p1, const Person& p2) { // Person temp(0, 0); // temp.m_A = p1.m_A + p2.m_A; // temp.m_B = p1.m_B + p2.m_B; // return temp; //} //运算符重载 能够发生函数重载 Person operator+(const Person& p2, int val) { Person temp; temp.m_A = p2.m_A + val; temp.m_B = p2.m_B + val; return temp; } void test() { Person p1(10, 10); Person p2(20, 20); //成员函数方式 Person p3 = p2 + p1; //至关于 p2.operaor+(p1) cout << "mA:" << p3.m_A << " mB:" << p3.m_B << endl; Person p4 = p3 + 10; //至关于 operator+(p3,10) cout << "mA:" << p4.m_A << " mB:" << p4.m_B << endl; } int main() { test(); system("pause"); return 0; }
总结1:对于内置的数据类型的表达式的的运算符是不可能改变的
总结2:不要滥用运算符重载
做用:能够输出自定义数据类型
class Person { friend ostream& operator<<(ostream& out, Person& p); public: Person(int a, int b) { this->m_A = a; this->m_B = b; } //成员函数 实现不了 p << cout 不是咱们想要的效果 //void operator<<(Person& p){ //} private: int m_A; int m_B; }; //全局函数实现左移重载 //ostream对象只能有一个 ostream& operator<<(ostream& out, Person& p) { out << "a:" << p.m_A << " b:" << p.m_B; return out; } void test() { Person p1(10, 20); cout << p1 << "hello world" << endl; //链式编程 } int main() { test(); system("pause"); return 0; }
总结:重载左移运算符配合友元能够实现输出自定义数据类型
做用: 经过重载递增运算符,实现本身的整型数据
class MyInteger { friend ostream& operator<<(ostream& out, MyInteger myint); public: MyInteger() { m_Num = 0; } //前置++ //这里之因此采用引用是为了使每次返回的值都在同一个数值进行操做 MyInteger& operator++() { //先++ m_Num++; //再返回 return *this; } //后置++ MyInteger operator++(int) { //先返回 MyInteger temp = *this; //记录当前自己的值,而后让自己的值加1,可是返回的是之前的值,达到先返回后++; m_Num++; return temp; }//这里之因此不返回引用是由于temp是局部变量的引用,函数执行结束后就已经被释放,若是返回引用就成了非法操做 private: int m_Num; }; ostream& operator<<(ostream& out, MyInteger myint) { out << myint.m_Num; return out; } //前置++ 先++ 再返回 void test01() { MyInteger myInt; cout << ++myInt << endl; cout << myInt << endl; } //后置++ 先返回 再++ void test02() { MyInteger myInt; cout << myInt++ << endl; cout << myInt << endl; } int main() { test01(); //test02(); system("pause"); return 0; }
总结: 前置递增返回引用,后置递增返回值
c++编译器至少给一个类添加4个函数
若是类中有属性指向堆区,作赋值操做时也会出现深浅拷贝问题
示例:
class Person { public: Person(int age) { //将年龄数据开辟到堆区 m_Age = new int(age); } //重载赋值运算符 //这里的引用时由于若是返回值,只是将当前内存内存数据从新复制了一份,依然会带来浅拷贝问题,因此采用引用 Person& operator=(Person &p) { if (m_Age != NULL) { delete m_Age; m_Age = NULL; } //编译器提供的代码是浅拷贝,堆区内存重复释放 //m_Age = p.m_Age; //提供深拷贝 解决浅拷贝的问题 m_Age = new int(*p.m_Age); //返回自身 return *this; } ~Person() { if (m_Age != NULL) { delete m_Age; m_Age = NULL; } } //年龄的指针 int *m_Age; }; void test01() { Person p1(18); Person p2(20); Person p3(30); p3 = p2 = p1; //赋值操做 cout << "p1的年龄为:" << *p1.m_Age << endl; cout << "p2的年龄为:" << *p2.m_Age << endl; cout << "p3的年龄为:" << *p3.m_Age << endl; } int main() { test01(); //int a = 10; //int b = 20; //int c = 30; //c = b = a; //cout << "a = " << a << endl; //cout << "b = " << b << endl; //cout << "c = " << c << endl; system("pause"); return 0; }
做用:重载关系运算符,可让两个自定义类型对象进行对比操做
示例:
class Person { public: Person(string name, int age) { this->m_Name = name; this->m_Age = age; }; bool operator==(Person & p) { if (this->m_Name == p.m_Name && this->m_Age == p.m_Age) { return true; } else { return false; } } bool operator!=(Person & p) { if (this->m_Name == p.m_Name && this->m_Age == p.m_Age) { return false; } else { return true; } } string m_Name; int m_Age; }; void test01() { //int a = 0; //int b = 0; Person a("孙悟空", 18); Person b("孙悟空", 18); if (a == b) { cout << "a和b相等" << endl; } else { cout << "a和b不相等" << endl; } if (a != b) { cout << "a和b不相等" << endl; } else { cout << "a和b相等" << endl; } } int main() { test01(); system("pause"); return 0; }
示例:
class MyPrint { public: void operator()(string text) { cout << text << endl; } }; void test01() { //重载的()操做符 也称为仿函数 MyPrint myFunc; myFunc("hello world"); } class MyAdd { public: int operator()(int v1, int v2) { return v1 + v2; } }; void test02() { MyAdd add; int ret = add(10, 10); cout << "ret = " << ret << endl; //匿名对象调用 cout << "MyAdd()(100,100) = " << MyAdd()(100, 100) << endl; } int main() { test01(); test02(); system("pause"); return 0; }
继承是面向对象三大特性之一
有些类与类之间存在特殊的关系,例以下图中:

咱们发现,定义这些类时,下级别的成员除了拥有上一级的共性,还有本身的特性。
这个时候咱们就能够考虑利用继承的技术,减小重复代码
例如咱们看到不少网站中,都有公共的头部,公共的底部,甚至公共的左侧列表,只有中心内容不一样
接下来咱们分别利用普通写法和继承的写法来实现网页中的内容,看一下继承存在的意义以及好处
普通实现:
//Java页面 class Java { public: void header() { cout << "首页、公开课、登陆、注册...(公共头部)" << endl; } void footer() { cout << "帮助中心、交流合做、站内地图...(公共底部)" << endl; } void left() { cout << "Java,Python,C++...(公共分类列表)" << endl; } void content() { cout << "JAVA学科视频" << endl; } }; //Python页面 class Python { public: void header() { cout << "首页、公开课、登陆、注册...(公共头部)" << endl; } void footer() { cout << "帮助中心、交流合做、站内地图...(公共底部)" << endl; } void left() { cout << "Java,Python,C++...(公共分类列表)" << endl; } void content() { cout << "Python学科视频" << endl; } }; //C++页面 class CPP { public: void header() { cout << "首页、公开课、登陆、注册...(公共头部)" << endl; } void footer() { cout << "帮助中心、交流合做、站内地图...(公共底部)" << endl; } void left() { cout << "Java,Python,C++...(公共分类列表)" << endl; } void content() { cout << "C++学科视频" << endl; } }; void test01() { //Java页面 cout << "Java下载视频页面以下: " << endl; Java ja; ja.header(); ja.footer(); ja.left(); ja.content(); cout << "--------------------" << endl; //Python页面 cout << "Python下载视频页面以下: " << endl; Python py; py.header(); py.footer(); py.left(); py.content(); cout << "--------------------" << endl; //C++页面 cout << "C++下载视频页面以下: " << endl; CPP cp; cp.header(); cp.footer(); cp.left(); cp.content(); } int main() { test01(); system("pause"); return 0; }
继承实现:
//公共页面 class BasePage { public: void header() { cout << "首页、公开课、登陆、注册...(公共头部)" << endl; } void footer() { cout << "帮助中心、交流合做、站内地图...(公共底部)" << endl; } void left() { cout << "Java,Python,C++...(公共分类列表)" << endl; } }; //Java页面 class Java : public BasePage { public: void content() { cout << "JAVA学科视频" << endl; } }; //Python页面 class Python : public BasePage { public: void content() { cout << "Python学科视频" << endl; } }; //C++页面 class CPP : public BasePage { public: void content() { cout << "C++学科视频" << endl; } }; void test01() { //Java页面 cout << "Java下载视频页面以下: " << endl; Java ja; ja.header(); ja.footer(); ja.left(); ja.content(); cout << "--------------------" << endl; //Python页面 cout << "Python下载视频页面以下: " << endl; Python py; py.header(); py.footer(); py.left(); py.content(); cout << "--------------------" << endl; //C++页面 cout << "C++下载视频页面以下: " << endl; CPP cp; cp.header(); cp.footer(); cp.left(); cp.content(); } int main() { test01(); system("pause"); return 0; }
总结:
继承的好处:能够减小重复的代码
class A : public B;
A 类称为子类 或 派生类
B 类称为父类 或 基类
派生类中的成员,包含两大部分:
一类是从基类继承过来的,一类是本身增长的成员。
从基类继承过过来的表现其共性,而新增的成员体现了其个性。
继承的语法:class 子类 : 继承方式 父类
继承方式一共有三种:

示例:
class Base1 { public: int m_A; protected: int m_B; private: int m_C; }; //公共继承 class Son1 :public Base1 { public: void func() { m_A; //可访问 public权限 m_B; //可访问 protected权限 //m_C; //不可访问 } }; void myClass() { Son1 s1; s1.m_A; //其余类只能访问到公共权限 } //保护继承 class Base2 { public: int m_A; protected: int m_B; private: int m_C; }; class Son2:protected Base2 { public: void func() { m_A; //可访问 protected权限 m_B; //可访问 protected权限 //m_C; //不可访问 } }; void myClass2() { Son2 s; //s.m_A; //不可访问 } //私有继承 class Base3 { public: int m_A; protected: int m_B; private: int m_C; }; class Son3:private Base3 { public: void func() { m_A; //可访问 private权限 m_B; //可访问 private权限 //m_C; //不可访问 } }; class GrandSon3 :public Son3 { public: void func() { //Son3是私有继承,因此继承Son3的属性在GrandSon3中都没法访问到 //m_A; //m_B; //m_C; } };
问题:从父类继承过来的成员,哪些属于子类对象中?
示例:
class Base { public: int m_A; protected: int m_B; private: int m_C; //私有成员只是被隐藏了,可是仍是会继承下去 }; //公共继承 class Son :public Base { public: int m_D; }; void test01() { cout << "sizeof Son = " << sizeof(Son) << endl; } int main() { test01(); system("pause"); return 0; }
利用工具查看:

打开工具窗口后,定位到当前CPP文件的盘符
而后输入: cl /d1 reportSingleClassLayout查看的类名 所属文件名
效果以下图:

结论: 父类中私有成员也是被子类继承下去了,只是由编译器给隐藏后访问不到
子类继承父类后,当建立子类对象,也会调用父类的构造函数
问题:父类和子类的构造和析构顺序是谁先谁后?
示例:
class Base { public: Base() { cout << "Base构造函数!" << endl; } ~Base() { cout << "Base析构函数!" << endl; } }; class Son : public Base { public: Son() { cout << "Son构造函数!" << endl; } ~Son() { cout << "Son析构函数!" << endl; } }; void test01() { //继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反 Son s; } int main() { test01(); system("pause"); return 0; }
总结:继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反
问题:当子类与父类出现同名的成员,如何经过子类对象,访问到子类或父类中同名的数据呢?
示例:
class Base { public: Base() { m_A = 100; } void func() { cout << "Base - func()调用" << endl; } void func(int a) { cout << "Base - func(int a)调用" << endl; } public: int m_A; }; class Son : public Base { public: Son() { m_A = 200; } //当子类与父类拥有同名的成员函数,子类会隐藏父类中全部版本的同名成员函数 //若是想访问父类中被隐藏的同名成员函数,须要加父类的做用域 void func() { cout << "Son - func()调用" << endl; } public: int m_A; }; void test01() { Son s; cout << "Son下的m_A = " << s.m_A << endl; cout << "Base下的m_A = " << s.Base::m_A << endl; s.func(); s.Base::func(); s.Base::func(10); } int main() { test01(); system("pause"); return EXIT_SUCCESS; }
总结:
问题:继承中同名的静态成员在子类对象上如何进行访问?
静态成员和非静态成员出现同名,处理方式一致
示例:
class Base { public: static void func() { cout << "Base - static void func()" << endl; } static void func(int a) { cout << "Base - static void func(int a)" << endl; } static int m_A; }; int Base::m_A = 100; class Son : public Base { public: static void func() { cout << "Son - static void func()" << endl; } static int m_A; }; int Son::m_A = 200; //同名成员属性 void test01() { //经过对象访问 cout << "经过对象访问: " << endl; Son s; cout << "Son 下 m_A = " << s.m_A << endl; cout << "Base 下 m_A = " << s.Base::m_A << endl; //经过类名访问 cout << "经过类名访问: " << endl; cout << "Son 下 m_A = " << Son::m_A << endl; //第一个::表明经过类名方式访问静态成员变量,第二个:: //表明父类做用域 cout << "Base 下 m_A = " << Son::Base::m_A << endl; } //同名成员函数 void test02() { //经过对象访问 cout << "经过对象访问: " << endl; Son s; s.func(); s.Base::func(); cout << "经过类名访问: " << endl; Son::func(); Son::Base::func(); //出现同名,子类会隐藏掉父类中全部同名成员函数,须要加做做用域访问 Son::Base::func(100); } int main() { //test01(); test02(); system("pause"); return 0; }
总结:同名静态成员处理方式和非静态处理方式同样,只不过有两种访问的方式(经过对象 和 经过类名)

C++容许一个类继承多个类
语法: class 子类 :继承方式 父类1 , 继承方式 父类2...
多继承可能会引起父类中有同名成员出现,须要加做用域区分
C++实际开发中不建议用多继承
示例:
class Base1 { public: Base1() { m_A = 100; } public: int m_A; }; class Base2 { public: Base2() { m_A = 200; //开始是m_B 不会出问题,可是改成mA就会出现不明确 } public: int m_A; }; //语法:class 子类:继承方式 父类1 ,继承方式 父类2 class Son : public Base2, public Base1 { public: Son() { m_C = 300; m_D = 400; } public: int m_C; int m_D; }; //多继承容易产生成员同名的状况 //经过使用类名做用域能够区分调用哪个基类的成员 void test01() { Son s; cout << "sizeof Son = " << sizeof(s) << endl; cout << s.Base1::m_A << endl; cout << s.Base2::m_A << endl; } int main() { test01(); system("pause"); return 0; }
总结: 多继承中若是父类中出现了同名状况,子类使用时候要加做用域
菱形继承概念:
两个派生类继承同一个基类
又有某个类同时继承者两个派生类
这种继承被称为菱形继承,或者钻石继承
典型的菱形继承案例:

菱形继承问题:
羊继承了动物的数据,驼一样继承了动物的数据,当草泥马使用数据时,就会产生二义性。
草泥马继承自动物的数据继承了两份,其实咱们应该清楚,这份数据咱们只须要一份就能够。
示例:
class Animal { public: int m_Age; }; //继承前加virtual关键字后,变为虚继承 //此时公共的父类Animal称为虚基类 class Sheep : virtual public Animal {}; class Tuo : virtual public Animal {}; class SheepTuo : public Sheep, public Tuo {}; void test01() { SheepTuo st; st.Sheep::m_Age = 100; st.Tuo::m_Age = 200; cout << "st.Sheep::m_Age = " << st.Sheep::m_Age << endl; cout << "st.Tuo::m_Age = " << st.Tuo::m_Age << endl; cout << "st.m_Age = " << st.m_Age << endl; } int main() { test01(); system("pause"); return 0; }
总结:
多态是C++面向对象三大特性之一
多态分为两类
静态多态和动态多态区别:
下面经过案例进行讲解多态
class Animal { public: //Speak函数就是虚函数 //函数前面加上virtual关键字,变成虚函数,那么编译器在编译的时候就不能肯定函数调用了。 virtual void speak() { cout << "动物在说话" << endl; } }; class Cat :public Animal { public: void speak() { cout << "小猫在说话" << endl; } }; class Dog :public Animal { public: void speak() { cout << "小狗在说话" << endl; } }; //咱们但愿传入什么对象,那么就调用什么对象的函数 //若是函数地址在编译阶段就能肯定,那么静态联编 //若是函数地址在运行阶段才能肯定,就是动态联编 void DoSpeak(Animal & animal)//父类指针或引用指向子类对象 { animal.speak(); } // //多态知足条件: //一、有继承关系 //二、子类重写父类中的虚函数 //多态使用: //父类指针或引用指向子类对象 void test01() { Cat cat; DoSpeak(cat); Dog dog; DoSpeak(dog); } int main() { test01(); system("pause"); return 0; }
总结:
多态知足条件
多态使用条件
重写:函数返回值类型 函数名 参数列表 彻底一致称为重写

案例描述:
分别利用普通写法和多态技术,设计实现两个操做数进行运算的计算器类
多态的优势:
示例:
//普通实现 class Calculator { public: int getResult(string oper) { if (oper == "+") { return m_Num1 + m_Num2; } else if (oper == "-") { return m_Num1 - m_Num2; } else if (oper == "*") { return m_Num1 * m_Num2; } //若是要提供新的运算,须要修改源码 } public: int m_Num1; int m_Num2; }; void test01() { //普通实现测试 Calculator c; c.m_Num1 = 10; c.m_Num2 = 10; cout << c.m_Num1 << " + " << c.m_Num2 << " = " << c.getResult("+") << endl; cout << c.m_Num1 << " - " << c.m_Num2 << " = " << c.getResult("-") << endl; cout << c.m_Num1 << " * " << c.m_Num2 << " = " << c.getResult("*") << endl; } //多态实现 //抽象计算器类 //多态优势:代码组织结构清晰,可读性强,利于前期和后期的扩展以及维护 class AbstractCalculator { public : virtual int getResult() { return 0; } int m_Num1; int m_Num2; }; //加法计算器 class AddCalculator :public AbstractCalculator { public: int getResult() { return m_Num1 + m_Num2; } }; //减法计算器 class SubCalculator :public AbstractCalculator { public: int getResult() { return m_Num1 - m_Num2; } }; //乘法计算器 class MulCalculator :public AbstractCalculator { public: int getResult() { return m_Num1 * m_Num2; } }; void test02() { //建立加法计算器 AbstractCalculator *abc = new AddCalculator; abc->m_Num1 = 10; abc->m_Num2 = 10; cout << abc->m_Num1 << " + " << abc->m_Num2 << " = " << abc->getResult() << endl; delete abc; //用完了记得销毁 //建立减法计算器 abc = new SubCalculator; abc->m_Num1 = 10; abc->m_Num2 = 10; cout << abc->m_Num1 << " - " << abc->m_Num2 << " = " << abc->getResult() << endl; delete abc; //建立乘法计算器 abc = new MulCalculator; abc->m_Num1 = 10; abc->m_Num2 = 10; cout << abc->m_Num1 << " * " << abc->m_Num2 << " = " << abc->getResult() << endl; delete abc; } int main() { //test01(); test02(); system("pause"); return 0; }
总结:C++开发提倡利用多态设计程序架构,由于多态优势不少
在多态中,一般父类中虚函数的实现是毫无心义的,主要都是调用子类重写的内容
所以能够将虚函数改成纯虚函数
纯虚函数语法:virtual 返回值类型 函数名 (参数列表)= 0 ;
当类中有了纯虚函数,这个类也称为抽象类
抽象类特色:
示例:
class Base { public: //纯虚函数 //类中只要有一个纯虚函数就称为抽象类 //抽象类没法实例化对象 //子类必须重写父类中的纯虚函数,不然也属于抽象类 virtual void func() = 0; }; class Son :public Base { public: virtual void func() { cout << "func调用" << endl; }; }; void test01() { Base * base = NULL; //base = new Base; // 错误,抽象类没法实例化对象 base = new Son; base->func(); delete base;//记得销毁 } int main() { test01(); system("pause"); return 0; }
案例描述:
制做饮品的大体流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料
利用多态技术实现本案例,提供抽象制做饮品基类,提供子类制做咖啡和茶叶

示例:
//抽象制做饮品 class AbstractDrinking { public: //烧水 virtual void Boil() = 0; //冲泡 virtual void Brew() = 0; //倒入杯中 virtual void PourInCup() = 0; //加入辅料 virtual void PutSomething() = 0; //规定流程 void MakeDrink() { Boil(); Brew(); PourInCup(); PutSomething(); } }; //制做咖啡 class Coffee : public AbstractDrinking { public: //烧水 virtual void Boil() { cout << "煮农夫山泉!" << endl; } //冲泡 virtual void Brew() { cout << "冲泡咖啡!" << endl; } //倒入杯中 virtual void PourInCup() { cout << "将咖啡倒入杯中!" << endl; } //加入辅料 virtual void PutSomething() { cout << "加入牛奶!" << endl; } }; //制做茶水 class Tea : public AbstractDrinking { public: //烧水 virtual void Boil() { cout << "煮自来水!" << endl; } //冲泡 virtual void Brew() { cout << "冲泡茶叶!" << endl; } //倒入杯中 virtual void PourInCup() { cout << "将茶水倒入杯中!" << endl; } //加入辅料 virtual void PutSomething() { cout << "加入枸杞!" << endl; } }; //业务函数 void DoWork(AbstractDrinking* drink) { drink->MakeDrink(); delete drink; } void test01() { DoWork(new Coffee); cout << "--------------" << endl; DoWork(new Tea); } int main() { test01(); system("pause"); return 0; }
多态使用时,若是子类中有属性开辟到堆区,那么父类指针在释放时没法调用到子类的析构代码
解决方式:将父类中的析构函数改成虚析构或者纯虚析构
虚析构和纯虚析构共性:
虚析构和纯虚析构区别:
虚析构语法:
virtual ~类名(){}
纯虚析构语法:
virtual ~类名() = 0;
类名::~类名(){}
示例:
class Animal { public: Animal() { cout << "Animal 构造函数调用!" << endl; } //纯虚函数无需实现 virtual void Speak() = 0; //析构函数加上virtual关键字,变成虚析构函数 //virtual ~Animal() //{ // cout << "Animal虚析构函数调用!" << endl; //} virtual ~Animal() = 0;//纯虚析构的声明 }; Animal::~Animal() { cout << "Animal 纯虚析构函数调用!" << endl; } //和包含普通纯虚函数的类同样,包含了纯虚析构函数的类也是一个抽象类。不可以被实例化。 class Cat : public Animal { public: Cat(string name) { cout << "Cat构造函数调用!" << endl; m_Name = new string(name); } virtual void Speak() { cout << *m_Name << "小猫在说话!" << endl; } ~Cat() { cout << "Cat析构函数调用!" << endl; if (this->m_Name != NULL) { delete m_Name; m_Name = NULL; } } public: string *m_Name; }; void test01() { Animal *animal = new Cat("Tom"); animal->Speak(); //经过父类指针去释放,会致使子类对象可能清理不干净,形成内存泄漏 //怎么解决?给基类增长一个虚析构函数 //虚析构函数就是用来解决经过父类指针释放子类对象 delete animal; } int main() { test01(); system("pause"); return 0; }
总结:
1. 虚析构或纯虚析构就是用来解决经过父类指针释放子类对象
2. 若是子类中没有堆区数据,能够不写为虚析构或纯虚析构
3. 拥有纯虚析构函数的类也属于抽象类
案例描述:
电脑主要组成部件为 CPU(用于计算),显卡(用于显示),内存条(用于存储)
将每一个零件封装出抽象基类,而且提供不一样的厂商生产不一样的零件,例如Intel厂商和Lenovo厂商
建立电脑类提供让电脑工做的函数,而且调用每一个零件工做的接口
测试时组装三台不一样的电脑进行工做
示例:
#include<iostream> using namespace std; //抽象CPU类 class CPU { public: //抽象的计算函数 virtual void calculate() = 0; }; //抽象显卡类 class VideoCard { public: //抽象的显示函数 virtual void display() = 0; }; //抽象内存条类 class Memory { public: //抽象的存储函数 virtual void storage() = 0; }; //电脑类 class Computer { public: Computer(CPU * cpu, VideoCard * vc, Memory * mem) { m_cpu = cpu; m_vc = vc; m_mem = mem; } //提供工做的函数 void work() { //让零件工做起来,调用接口 m_cpu->calculate(); m_vc->display(); m_mem->storage(); } //提供析构函数 释放3个电脑零件 ~Computer() { //释放CPU零件 if (m_cpu != NULL) { delete m_cpu; m_cpu = NULL; } //释放显卡零件 if (m_vc != NULL) { delete m_vc; m_vc = NULL; } //释放内存条零件 if (m_mem != NULL) { delete m_mem; m_mem = NULL; } } private: CPU * m_cpu; //CPU的零件指针 VideoCard * m_vc; //显卡零件指针 Memory * m_mem; //内存条零件指针 }; //具体厂商 //Intel厂商 class IntelCPU :public CPU { public: virtual void calculate() { cout << "Intel的CPU开始计算了!" << endl; } }; class IntelVideoCard :public VideoCard { public: virtual void display() { cout << "Intel的显卡开始显示了!" << endl; } }; class IntelMemory :public Memory { public: virtual void storage() { cout << "Intel的内存条开始存储了!" << endl; } }; //Lenovo厂商 class LenovoCPU :public CPU { public: virtual void calculate() { cout << "Lenovo的CPU开始计算了!" << endl; } }; class LenovoVideoCard :public VideoCard { public: virtual void display() { cout << "Lenovo的显卡开始显示了!" << endl; } }; class LenovoMemory :public Memory { public: virtual void storage() { cout << "Lenovo的内存条开始存储了!" << endl; } }; void test01() { //第一台电脑零件 CPU * intelCpu = new IntelCPU; VideoCard * intelCard = new IntelVideoCard; Memory * intelMem = new IntelMemory; cout << "第一台电脑开始工做:" << endl; //建立第一台电脑 Computer * computer1 = new Computer(intelCpu, intelCard, intelMem); computer1->work(); delete computer1; cout << "-----------------------" << endl; cout << "第二台电脑开始工做:" << endl; //第二台电脑组装 Computer * computer2 = new Computer(new LenovoCPU, new LenovoVideoCard, new LenovoMemory);; computer2->work(); delete computer2; cout << "-----------------------" << endl; cout << "第三台电脑开始工做:" << endl; //第三台电脑组装 Computer * computer3 = new Computer(new LenovoCPU, new IntelVideoCard, new LenovoMemory);; computer3->work(); delete computer3; }
程序运行时产生的数据都属于临时数据,程序一旦运行结束都会被释放
经过文件能够将数据持久化
C++中对文件操做须要包含头文件 < fstream >
文件类型分为两种:
操做文件的三大类:
写文件步骤以下:
包含头文件
#include <fstream>
建立流对象
ofstream ofs;
打开文件
ofs.open("文件路径",打开方式);
写数据
ofs << "写入的数据";
关闭文件
ofs.close();
文件打开方式:
打开方式 | 解释 |
---|---|
ios::in | 为读文件而打开文件 |
ios::out | 为写文件而打开文件 |
ios::ate | 初始位置:文件尾 |
ios::app | 追加方式写文件 |
ios::trunc | 若是文件存在先删除,再建立 |
ios::binary | 二进制方式 |
注意: 文件打开方式能够配合使用,利用|操做符
例如:用二进制方式写文件 ios::binary | ios:: out
示例:
#include <fstream> void test01() { ofstream ofs; ofs.open("test.txt", ios::out); ofs << "姓名:张三" << endl; ofs << "性别:男" << endl; ofs << "年龄:18" << endl; ofs.close(); } int main() { test01(); system("pause"); return 0; }
总结:
读文件与写文件步骤类似,可是读取方式相对于比较多
读文件步骤以下:
包含头文件
#include <fstream>
建立流对象
ifstream ifs;
打开文件并判断文件是否打开成功
ifs.open("文件路径",打开方式);
读数据
四种方式读取
关闭文件
ifs.close();
示例:
#include <fstream> #include <string> void test01() { ifstream ifs; ifs.open("test.txt", ios::in); if (!ifs.is_open()) { cout << "文件打开失败" << endl; return; } //第一种方式 //char buf[1024] = { 0 }; //while (ifs >> buf) //{ // cout << buf << endl; //} //第二种 //char buf[1024] = { 0 }; //while (ifs.getline(buf,sizeof(buf))) //{ // cout << buf << endl; //} //第三种 //string buf; //while (getline(ifs, buf))//第一个参数是输入流对象,第二个是字符串 //{ // cout << buf << endl; //} char c; while ((c = ifs.get()) != EOF) //end of file { cout << c; } ifs.close(); } int main() { test01(); system("pause"); return 0; }
总结:
以二进制的方式对文件进行读写操做
打开方式要指定为 ios::binary
二进制方式写文件主要利用流对象调用成员函数write
函数原型 :ostream& write(const char * buffer,int len);
参数解释:字符指针buffer指向内存中一段存储空间。len是读写的字节数
示例:
#include <fstream> #include <string> class Person { public: char m_Name[64]; int m_Age; }; //二进制文件 写文件 void test01() { //一、包含头文件 //二、建立输出流对象 ofstream ofs("person.txt", ios::out | ios::binary); //三、打开文件 //ofs.open("person.txt", ios::out | ios::binary); Person p = {"张三" , 18}; //四、写文件 ofs.write((const char *)&p, sizeof(p)); //五、关闭文件 ofs.close(); } int main() { test01(); system("pause"); return 0; }
总结:
二进制方式读文件主要利用流对象调用成员函数read
函数原型:istream& read(char *buffer,int len);
参数解释:字符指针buffer指向内存中一段存储空间。len是读写的字节数
示例:
#include <fstream> #include <string> class Person { public: char m_Name[64]; int m_Age; }; void test01() { ifstream ifs("person.txt", ios::in | ios::binary); if (!ifs.is_open()) { cout << "文件打开失败" << endl; } Person p; ifs.read((char *)&p, sizeof(p)); cout << "姓名: " << p.m_Name << " 年龄: " << p.m_Age << endl; } int main() { test01(); system("pause"); return 0; }