摘要: 2018年立刻就要结束了,咱们来回顾一下过去的这一年中,机器学习领域有哪些有趣的事情吧!
咱们先来看看Mybridge AI 中排名靠前的顶级开源项目,再聊聊机器学习今年都有哪些发展,最后探寻下新的一年中会有哪些有值得咱们期待的事情。html
BERTgit
BERT,全称为Bidirectional Encoder Representations from Transformers,是一种基于TensorFlow解决天然语言处理的新方法,且性能更好。咱们可使用BERT中的 预训练模型解决问题,该模型在性能上具备很大优点,好比能够识别句子中的上下文。在Github中很是受欢迎,有8848个星,完整学术论文请访问这里。github
DeepCreamPy算法
DeepCreamPy是一个深度学习工具,能够像Photoshop同样重建图像中被删除的区域。咱们使用图像编辑工具(好比PS)将删减的区域填充为绿色,神经网络能够对其进行复原。该项目在Github中有6365颗星。编程
TRFL浏览器
TRFL项目可用于编写TensorFlow中的强化学习代理,具体的操做文档在这里。网络
Horizon框架
Horizon是一个基于PyTorch构建的强化学习平台,并使用Caffe2为模型提供服务。Horizon的主要优点在于,设计者在设计这一平台的时候,考虑了生产用例。想要了解更多详细内容,请查看Facebook Research官方文档。另外,若是你想使用Horizon,可查看该使用文档。机器学习
DeOldify编程语言
DeOldify是一个用于着色和恢复旧图像的深度学习库。开发者结合了几种不一样的方法,来实现这一目标,其中的几种方法包括:带自注意力机制的生成对抗网络(Self-Attention Generative Adversarial Networks),Progressive Growing of GANs,以及TTUR( Two Time-Scale Update Rule)。
AdaNet
AdaNet是一个基于TensorFlow的库,它能够自动学习模型,且不须要不少的技术人员参与,该项目基于AdaNet算法。访问AdaNet的官方文档,请点击这里。
Graph Nets
Graph Nets是用于构建Sonnet和TensorFlow的DeepMind库。Graph 网络输入一个图形,输出也是一个图形。
Maskrcnn-benchmark
Maskrcnn-benchmark项目能够帮助咱们在Pytorch中构建对象检测和分割工具。这个库的优点在于速度快、内存效率高,能够进行多个GPU训练和推断,且为推断提供CPU支持。
PocketFlow
PocketFlow项目是一个加速和压缩深度学习模型的框架。它解决了大多数深度学习模型的计算费用问题。该项目最初由腾讯AI实验室的研究人员开发,了解其实现及官方文档请点击这里。
MAMEToolkit
MAMEToolKit是一个训练街机游戏强化学习算法的库,使用该工具能够跟踪游戏状态,同时也能够接收游戏帧数据。
PyTorch 1.0
在今年10月份举办的PyTorch会议期间,Facebook发布了PyTorch 1.0预览版。PyTorch 1.0解决了如下问题:训练耗时长、联网问题、缓慢的可扩展性以及Python编程语言带来的一些不灵活性。
PyTorch 1.0引入了一组编译工具Torch.jit,这将弥补生产和研究之间的差距。Torch.jit中包含Python中的Torch Script语言,在PyTorch 1.0中,咱们可使用图形模式构建模型,这在开发高性能和低延迟的应用程序中很是有用。
Auto-Keras
你或许听过自动化机器学习(automated machine learning),即自动化搜索机器学习模型的最佳参数。除Auto-Keras以外,还有其余的自动化机器学习模型,好比Google的AutoML。Auto-Keras是基于Keras和ENAS编写的,其中,ENAS是神经网络结构搜索的最新版本。
TensorFlow Serving
使用TensorFlow Serving系统,咱们能更加轻松的将TensorFlow模型部署到生产环境中。虽然TensorFlow Serving在2017年就已经发布,可是今年更加注重将模型应用到生产环境环节。
Machine Learning Javascript
如今已经有一些能够容许开发人员在浏览器上运行模型的Javascript框架,好比TensorFlow.js和Keras.js。其模型实现与使用的方法,与Keras或TensorFlow等常规框架很是类似。
2019年立刻就要到了,随着Auto-Keras等自动化工具的发展,开发人员的工做有望变得更加轻松。除此之外,咱们还拥有先进的研究以及优秀的社区,各种机器学习框架的性能还会更上一层楼。
本文为云栖社区原创内容,未经容许不得转载。