50行代码实现人脸检测

如今的人脸识别技术已经获得了很是普遍的应用,支付领域、身份验证、美颜相机里都有它的应用。下面小编给你们带来了基于50行Python代码实现人脸检测功能,一块儿看看吧。python

如今的人脸识别技术已经获得了很是普遍的应用,支付领域、身份验证、美颜相机里都有它的应用。用iPhone的同窗们应该对下面的功能比较熟悉。数组

clipboard.png

iPhone的照片中有一个“人物”的功能,可以将照片里的人脸识别出来并分类,背后的原理也是人脸识别技术。函数

这篇文章主要介绍怎样用Python实现人脸检测。人脸检测是人脸识别的基础。人脸检测的目的是识别出照片里的人脸并定位面部特征点,人脸识别是在人脸检测的基础上进一步告诉你这我的是谁。工具

好了,介绍就到这里。接下来,开始准备咱们的环境。测试

准备工做ui

本文的人脸检测基于dlib,dlib依赖Boost和cmake,因此首先须要安装这些包,以Ubuntu为例:spa

$ sudo apt-get install build-essential cmake

$ sudo apt-get install libgtk-3-dev

$ sudo apt-get install libboost-all-dev

咱们的程序中还用到numpy,opencv,因此也须要安装这些库:.net

$ pip install numpy

$ pip install scipy

$ pip install opencv-python

$ pip install dlib

人脸检测基于事先训练好的模型数据,从这里能够下到模型数据code

http://dlib.net/files/shape_p...orm

下载到本地路径后解压,记下解压后的文件路径,程序中会用到。

dlib的人脸特征点

上面下载的模型数据是用来估计人脸上68个特征点(x, y)的坐标位置,这68个坐标点的位置以下图所示

clipboard.png

咱们的程序将包含两个步骤:

第一步,在照片中检测人脸的区域

第二部,在检测到的人脸区域中,进一步检测器官(眼睛、鼻子、嘴巴、下巴、眉毛)

人脸检测代码

咱们先来定义几个工具函数:

defrect_to_bb(rect):

  x =rect.left()

  y =rect.top()

  w =rect.right() -x

  h =rect.bottom() -y  

  return(x, y, w, h)

这个函数里的rect是dlib脸部区域检测的输出。这里将rect转换成一个序列,序列的内容是矩形区域的边界信息。

defshape_to_np(shape, dtype="int"):

  coords =np.zeros((68, 2), dtype=dtype)  

  fori inrange(0, 68):

      coords[i] =(shape.part(i).x, shape.part(i).y)  

  returncoords

这个函数里的shape是dlib脸部特征检测的输出,一个shape里包含了前面说到的脸部特征的68个点。这个函数将shape转换成Numpy array,为方便后续处理。

defresize(image, width=1200):

  r =width *1.0/image.shape[1]

  dim =(width, int(image.shape[0] *r))

  resized =cv2.resize(image, dim, interpolation=cv2.INTER_AREA)  

  returnresized

这个函数里的image就是咱们要检测的图片。在人脸检测程序的最后,咱们会显示检测的结果图片来验证,这里作resize是为了不图片过大,超出屏幕范围。

接下来,开始咱们的主程序部分

importsys importnumpy as np

importdlib importcv2

iflen(sys.argv) < 2:  

  print"Usage: %s <image file>"%sys.argv[0]

  sys.exit(1)

image_file =sys.argv[1]

detector =dlib.get_frontal_face_detector()

predictor =dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

咱们从sys.argv[1]参数中读取要检测人脸的图片,接下来初始化人脸区域检测的detector和人脸特征检测的predictor。shape_predictor中的参数就是咱们以前解压后的文件的路径。

image =cv2.imread(image_file)

image =resize(image, width=1200)

gray =cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

rects =detector(gray, 1)

在检测特征区域前,咱们先要检测人脸区域。这段代码调用opencv加载图片,resize到合适的大小,转成灰度图,最后用detector检测脸部区域。由于一张照片可能包含多张脸,因此这里获得的是一个包含多张脸的信息的数组rects。

for(i, rect) inenumerate(rects):

  shape =predictor(gray, rect)

  shape =shape_to_np(shape)

  (x, y, w, h) =rect_to_bb(rect)

  cv2.rectangle(image, (x, y), (x +w, y +h), (0, 255, 0), 2)

  cv2.putText(image, "Face #{}".format(i +1), (x -10, y -10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)  

for(x, y) inshape:

      cv2.circle(image, (x, y), 2, (0, 0, 255), -1)

cv2.imshow("Output", image)

cv2.waitKey(0)

对于每一张检测到的脸,咱们进一步检测脸部的特征(鼻子、眼睛、眉毛等)。对于脸部区域,咱们用绿色的框在照片上标出;对于脸部特征,咱们用红色的点标出来。

最后咱们把加了检测标识的照片显示出来,waitKey(0)表示按任意键可退出程序。

以上是咱们程序的所有

测试

接下来是使人兴奋的时刻,检验咱们结果的时刻到来了。

下面是原图

clipboard.png

下面是程序识别的结果

clipboard.png

能够看到脸部区域被绿色的长方形框起来了,脸上的特征(鼻子,眼睛等)被红色点点标识出来了。

是否是很简单呢。

总结

以上所述是小编给你们介绍的50行Python代码实现人脸检测功能,但愿对你们有所帮助,若是你们有任何疑问请给我留言,小编会及时回复你们的。

相关文章
相关标签/搜索