查询缓存主要是为了提升查询访问速度,即当用户执行一次查询后,会将该数据结果放到缓存中,当下次再执行此查询时就不会访问数据库了而是直接从缓存中获取该数据。 若是在缓存中找到了数据那叫作命中。sql
@Test
public void testLocalCache() throws Exception {
SqlSession sqlSession = factory.openSession(); // 自动提交事务
StudentMapper studentMapper = sqlSession.getMapper(StudentMapper.class);
System.out.println(studentMapper.getStudentById(1));
// 第二三次会从缓存中拿数据,不查数据库
System.out.println(studentMapper.getStudentById(1));
System.out.println(studentMapper.getStudentById(1));
sqlSession.close();
}
复制代码
@Test
public void testLocalCacheClear() throws Exception {
SqlSession sqlSession = factory.openSession(true); // 自动提交事务
StudentMapper studentMapper = sqlSession.getMapper(StudentMapper.class);
System.out.println(studentMapper.getStudentById(1));
// 增删改会清空缓存
System.out.println("增长了" + studentMapper.addStudent(buildStudent()) + "个学生");
// 会从数据库查数据
System.out.println(studentMapper.getStudentById(1));
sqlSession.close();
}
复制代码
对SqlSession的操做mybatis内部都是经过Executor来执行的。Executor的生命周期和SqlSession是一致的。Mybatis在Executor中建立了一级缓存,基于PerpetualCache 类的 HashMap数据库
public class DefaultSqlSession implements SqlSession {
private Configuration configuration;
// 执行器
private Executor executor;
private boolean autoCommit;
private boolean dirty;
private List<Cursor<?>> cursorList;
}
public abstract class BaseExecutor implements Executor {
private static final Log log = LogFactory.getLog(BaseExecutor.class);
protected Transaction transaction;
protected Executor wrapper;
protected ConcurrentLinkedQueue<DeferredLoad> deferredLoads;
// 缓存实例
protected PerpetualCache localCache;
protected PerpetualCache localOutputParameterCache;
protected Configuration configuration;
protected int queryStack;
private boolean closed;
protected BaseExecutor(Configuration configuration, Transaction transaction) {
this.configuration = configuration; this.transaction = transaction;
this.deferredLoads = new ConcurrentLinkedQueue<DeferredLoad>();
this.closed = false; this.wrapperExecutor = this;
//mybatis一级缓存,在建立SqlSession->Executor时候动态建立,随着sqlSession销毁而销毁
this.localCache = new PerpetualCache("LocalCache");
this.localOutputParameterCache = new PerpetualCache("LocalOutputParameterCache");
}
}
// 缓存实现类
public class PerpetualCache implements Cache {
private String id;
private Map<Object, Object> cache = new HashMap<Object, Object>();
public PerpetualCache(String id) {
this.id = id;
}
}
复制代码
//SqlSession.selectList会调用此方法(一级缓存操做,老是先查询一级缓存,缓存中不存在再查询数据库)
public <E> List<E> query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
ErrorContext.instance().resource(ms.getResource()).activity("executing a query").object(ms.getId());
if (closed) {
//若是已经关闭,报错
throw new ExecutorException("Executor was closed.");
}
//先清一级缓存,再查询,但仅仅查询堆栈为0才清,为了处理递归调用
if (queryStack == 0 && ms.isFlushCacheRequired()) {
clearLocalCache();
}
List<E> list;
try {
//加一,这样递归调用到上面的时候就不会再清局部缓存了
queryStack++;
list = resultHandler == null ? (List<E>) localCache.getObject(key) : null;
if (list != null) {
//若是查到localCache缓存,处理
handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);
} else {
//从数据库查
list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);
}
}
finally {
queryStack--; //清空堆栈
}
if (queryStack == 0) {
//延迟加载队列中全部元素
for (DeferredLoad deferredLoad : deferredLoads) {
deferredLoad.load();
}
deferredLoads.clear(); //清空延迟加载队列
if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {
clearLocalCache();
}
}
return list;
}
复制代码
localCache 缓存的key 为CacheKey对象 CacheKey:statementId + rowBounds + 传递给JDBC的SQL + 传递给JDBC的参数值apache
public CacheKey createCacheKey(MappedStatement ms, Object parameterObject, RowBounds rowBounds, BoundSql boundSql) {
if (closed) {
throw new ExecutorException("Executor was closed.");
}
CacheKey cacheKey = new CacheKey();
cacheKey.update(ms.getId());
cacheKey.update(rowBounds.getOffset());
cacheKey.update(rowBounds.getLimit());
cacheKey.update(boundSql.getSql());
List<ParameterMapping> parameterMappings = boundSql.getParameterMappings();
TypeHandlerRegistry typeHandlerRegistry = ms.getConfiguration().getTypeHandlerRegistry();
// mimic DefaultParameterHandler logic
for (ParameterMapping parameterMapping : parameterMappings) {
if (parameterMapping.getMode() != ParameterMode.OUT) {
Object value;
String propertyName = parameterMapping.getProperty();
if (boundSql.hasAdditionalParameter(propertyName)) {
value = boundSql.getAdditionalParameter(propertyName);
} else if (parameterObject == null) {
value = null;
} else if (typeHandlerRegistry.hasTypeHandler(parameterObject.getClass())) {
value = parameterObject;
} else {
MetaObject metaObject = configuration.newMetaObject(parameterObject);
value = metaObject.getValue(propertyName);
}
cacheKey.update(value);
}
}
if (configuration.getEnvironment() != null) {
// issue #176
cacheKey.update(configuration.getEnvironment().getId());
}
return cacheKey;
}
复制代码
<delete id="deleteStudent" flushCache="false">
DELETE FROM t_student where id=#{id}
</delete>
复制代码
// mybatis-config.xml 中配置
<settings>
<setting name="localCacheScope" value="SESSION"/>
默认值为 true。即二级缓存默认是开启的
<setting name="cacheEnabled" value="true"/>
</settings>
// 具体mapper.xml 中配置
<mapper namespace="cn.itcast.mybatis.mapper.UserMapper">
<!-- 开启本mapper的namespace下的二级缓存
type:指定cache接口的实现类的类型,mybatis默认使用PerpetualCache
要和ehcache整合,须要配置type为ehcache实现cache接口的类型-->
<cache />
<!-- 下面的一些SQL语句暂时略 -->
</mapper>
复制代码
public Executor newExecutor(Transaction transaction, ExecutorType executorType) {
executorType = executorType == null ? defaultExecutorType : executorType;
//确保ExecutorType不为空(defaultExecutorType有可能为空)
executorType = executorType == null ? ExecutorType.SIMPLE : executorType;
Executor executor;
if (ExecutorType.BATCH == executorType) {
executor = new BatchExecutor(this, transaction);
} else if (ExecutorType.REUSE == executorType) {
executor = new ReuseExecutor(this, transaction);
} else {
executor = new SimpleExecutor(this, transaction);
}
//重点在这里,若是启用二级缓存,返回Executor的Cache包装类对象
if (cacheEnabled) {
executor = new CachingExecutor(executor);
}
executor = (Executor) interceptorChain.pluginAll(executor);
return executor;
}
复制代码
静态代理模式。在CachingExecutor的全部操做都是经过调用内部的delegate对象执行的。缓存只应用于查询缓存
public class CachingExecutor implements Executor {
private Executor delegate;
public CachingExecutor(Executor delegate) {
this.delegate = delegate;
delegate.setExecutorWrapper(this);
}
@Override
public int update(MappedStatement ms, Object parameterObject) throws SQLException {
//是否须要更缓存
flushCacheIfRequired(ms);
return delegate.update(ms, parameterObject);
}
@Override
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql)
throws SQLException {
Cache cache = ms.getCache();
if (cache != null) {
flushCacheIfRequired(ms);
if (ms.isUseCache() && resultHandler == null) {
ensureNoOutParams(ms, parameterObject, boundSql);
@SuppressWarnings("unchecked")
//从缓存中获取数据
List<E> list = (List<E>) tcm.getObject(cache, key);
if (list == null) {
list = delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
// 结果保存到缓存中
tcm.putObject(cache, key, list); // issue #578 and #116
}
return list;
}
}
return delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
}
}
复制代码
@Test
public void testCacheWithCommitOrClose() throws Exception {
SqlSession sqlSession1 = factory.openSession(true); // 自动提交事务
SqlSession sqlSession2 = factory.openSession(true); // 自动提交事务
StudentMapper studentMapper = sqlSession1.getMapper(StudentMapper.class);
StudentMapper studentMapper2 = sqlSession2.getMapper(StudentMapper.class);
System.out.println("studentMapper读取数据: " + studentMapper.getStudentById(1));
//sqlSession1关闭后,会将sqlsession1中的数据写到二级缓存区域
//不关闭的话不会写入二级缓存
sqlSession1.close();
System.out.println("studentMapper2读取数据: " + studentMapper2.getStudentById(1));
}
复制代码
@Test
public void testCacheWithoutCommitOrClose() throws Exception {
SqlSession sqlSession1 = factory.openSession(true); // 自动提交事务
SqlSession sqlSession2 = factory.openSession(true); // 自动提交事务
StudentMapper studentMapper = sqlSession1.getMapper(StudentMapper.class);
StudentMapper studentMapper2 = sqlSession2.getMapper(StudentMapper.class);
System.out.println("studentMapper读取数据: " + studentMapper.getStudentById(1));
//sqlSession未关闭,不会将数据写到二级缓存区域,会从数据库中查询
System.out.println("studentMapper2读取数据: " + studentMapper2.getStudentById(1));
}
复制代码
<setting name="cacheEnabled" value="false"/>
复制代码
<select id="selectStudentById" useCache="false" resultMap="studentMapper">
SELECT id,name,age,score,password FROM t_student where id=#{id}
</select>
复制代码
在一个命名空间下使用二级缓存 二级缓存对于不一样的命名空间namespace的数据是互不干扰的,假若多个namespace中对一个表进行操做的话,就会致使这不一样的namespace中的数据不一致的状况。bash
在单表上使用二级缓存 在作关联关系查询时,就会发生多表的操做,此时有可能这些表存在于多个namespace中,这就会出现上一条内容出现的问题了。session
查询多于修改时使用二级缓存 在查询操做远远多于增删改操做的状况下可使用二级缓存。由于任何增删改操做都将刷新二级缓存,对二级缓存的频繁刷新将下降系统性能。mybatis