首先看一下Map接口的继承关系java
Map 为最顶层的接口,AbstractMap 抽象类实现Map接口,TreeMap HashMap ConcurrentHashMap 都是继承自 AbstractMap,实现了不一样的功能。ConcurrentHashMap 另外又实现了一个 ConcurrentMap 接口,这个接口继承自Map,对Map接口进行了一些扩展(看名字是在扩展了并发方面)。node
接下来经过分析HashMap代码,了解HashMap的内部结构。主要内容为:bootstrap
首先看一下什么是Map,Map是一个接口(Interface)。在 api 中的定义为api
An object that maps keys to values. A map cannot contain duplicate keys; each key can map to at most one value.数组
一个拥有键值对的对象。一个map不能包含重复的key,没一个key最多能够映射到一个值。网络
看一下map接口中主要的方法并发
public interface Map<K,V> { // Query Operations int size(); boolean isEmpty(); boolean containsKey(Object key); boolean containsValue(Object value); V get(Object key); // Modification Operations V put(K key, V value); V remove(Object key); // Bulk Operations void putAll(Map<? extends K, ? extends V> m); void clear(); // Views Set<K> keySet(); Collection<V> values(); Set<Map.Entry<K, V>> entrySet(); interface Entry<K,V> { K getKey(); V getValue(); V setValue(V value); boolean equals(Object o); int hashCode(); 。。。 } // Comparison and hashing boolean equals(Object o); int hashCode(); // Defaultable methods ... }
注释写得很清楚,接口中有一些增长获取移除等操做(Query Opertions, Modification Operations, Buld Operations,View), 还有一些java8以后引入的默认的方法(这里没有显示出来)。views 部分提供了一些能够查看map内部的方法,keySet() 返回全部key的一个Set集合,values() 返回全部value的集合,entrySet() 返回全部键值对的集合。app
Map 接口中有一个内部接口 Entry<K, V>。这个接口很是重要,咱们平时所说的键值对就是这个东西。less
它提供的方法很简单函数
interface Entry<K,V> { K getKey(); V getValue(); V setValue(V value); boolean equals(Object o); int hashCode(); 。。。 }
获取key, 获取value, 设置value的值,equals hashCode方法。
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable
继承自 AbstractMap 实现了 Map 接口
看下 AbstractMap 的定义
public abstract class AbstractMap<K,V> implements Map<K,V> {
AbstractMap 是一个抽象类也实现了 Map 接口。
看到这里就很奇怪了,为何 AbstractMap 已经实现了 Map 接口,HashMap 还要再实现一下 Map 接口?
查询了不少资料,听说是做者写得多余了,其实 HashMap 不必再 implements Map<K, V> 一下,下面的连接有人也提出了一样的疑问。
https://stackoverflow.com/questions/2165204/why-does-linkedhashsete-extend-hashsete-and-implement-sete
如今来看一下 HashMap 中定义的一些主要的变量
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable { 。。。 /** * The default initial capacity - MUST be a power of two. */ static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<30. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load factor used when none specified in constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The bin count threshold for using a tree rather than list for a * bin. Bins are converted to trees when adding an element to a * bin with at least this many nodes. The value must be greater * than 2 and should be at least 8 to mesh with assumptions in * tree removal about conversion back to plain bins upon * shrinkage. */ static final int TREEIFY_THRESHOLD = 8; /** * The bin count threshold for untreeifying a (split) bin during a * resize operation. Should be less than TREEIFY_THRESHOLD, and at * most 6 to mesh with shrinkage detection under removal. */ static final int UNTREEIFY_THRESHOLD = 6; /** * The smallest table capacity for which bins may be treeified. * (Otherwise the table is resized if too many nodes in a bin.) * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts * between resizing and treeification thresholds. */ static final int MIN_TREEIFY_CAPACITY = 64; /** * Basic hash bin node, used for most entries. (See below for * TreeNode subclass, and in LinkedHashMap for its Entry subclass.) */ static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; V value; Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } } ... /** * The table, initialized on first use, and resized as * necessary. When allocated, length is always a power of two. * (We also tolerate length zero in some operations to allow * bootstrapping mechanics that are currently not needed.) */ transient Node<K,V>[] table; /** * Holds cached entrySet(). Note that AbstractMap fields are used * for keySet() and values(). */ transient Set<Map.Entry<K,V>> entrySet; /** * The number of key-value mappings contained in this map. */ transient int size; /** * The number of times this HashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the HashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the HashMap fail-fast. (See ConcurrentModificationException). */ transient int modCount; /** * The next size value at which to resize (capacity * load factor). * * @serial */ // (The javadoc description is true upon serialization. // Additionally, if the table array has not been allocated, this // field holds the initial array capacity, or zero signifying // DEFAULT_INITIAL_CAPACITY.) int threshold; /** * The load factor for the hash table. * * @serial */ final float loadFactor; ... }
保留了源码中的注释说明,基本上看下说明能够了解这些字段的做用。
DEFAULT_INITIAL_CAPACITY 定义了初始化容量,一个map在无参数的状况下被建立出来,默认的大小就是 1<<4 (16)。
DEFAULT_LOAD_FACTOR 默认负载因子 0.75, 这个很是重要,在后面的扩容会用到。
public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); } public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted } public HashMap(Map<? extends K, ? extends V> m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false); }
HashMap 提供了4个构造方法,能够接收修改初始化大小和负载因子,可是通常状况下就不要去修改了,避免设置得很差性能上出现问题。
MAXIMUM_CAPACITY 最大容量 1 << 30。1左移30位二进制的形势下就是 0100 0000 0000 0000 0000 0000 0000 0000,这个的意思是2的30次方,十进制下是 1073741824。注释说了 MUST be a power of two(必定要是2的次方), 再多移动一位 1<<31 就变成负数了。
TREEIFY_THRESHOLD,UNTREEIFY_THRESHOLD, MIN_TREEIFY_CAPACITY 这几个参数是后面当红黑树的参数。
接下来看到2个东西 static class Node<K,V> implements Map.Entry<K,V> 和 transient Node<K,V>[] table。这2个东西就是 HashMap 的本质了。其实 HashMap 就是一个由 Node 类组成的一个二维数组,Node 是 Map.Entry 的具体实现类。
内部定义了了4个字段,hash值,泛型key,泛型value,指向下一个Node节点的引用。
The table, initialized on first use, and resized as necessary. When allocated, length is always a power of two.
table 会在第一次使用的时候初始化,而且在有必要的时候(容量超过负载因子)扩容。当扩容以后,数组的长度必定是2的n次方。(后面会解释为何必定是2的n次方,而不是其余值。)
(此图来源于网络)
map的大体容貌是这样的,当put一个对象的时候会根据对象的hash值计算出它在数组中存放的位置(经过扰动函数计算,后面会讲到),而后判断这个位置上有没有已经存在的对象,若是没有就直接放到这个位置,若是有将已存在对象的next指向当前对象造成一个链表,当链表长度超过必定数量以后,链表会转换成红黑树(这是java8以后的修改,为了提高查询效率)。因此hashmap本质上是一个二维数组加链表加红黑树的组合。
HashMap 的 get 方法以下
transient Node<K,V>[] table; public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { // always check first node if (first.hash == hash && ((k = first.key) == key || (key != null && key.equals(k)))) return first; if ((e = first.next) != null) { if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
先经过key获取hash值(拿key的hashCode进行高位异或),经过key的hash值判断出这个key应该在数组的哪一个位置读取(first = tab[(n-1) & hash],这个(n-1) & hash为“扰动函数”,意在减小不一样的key落在数组同一位置的机率,已在另外一篇文中详细说明),经过hash值和hashcode相等来判断该位置是否已经有元素,若是没有返回null,若是有按链表顺序检索,若是链表为红黑树,则转换为红黑树的查找,找到相同的元素即返回,没有找到返回null。
HashMap 的 put 方法以下
transient Node<K,V>[] table; public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; } Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) { return new Node<>(hash, key, value, next); }
首先判断table是否为空,若是是空的那么就进行resize(resize方法下面说明),也就是说在第一次put的时候进行扩容,接着仍是经过扰动函数算出key在数组中的位置,若是该位置没有元素,那么直接建立一个元素(newNode)放到该位置,若是该位置不是空的,先判断一次节点元素和传进来的key相同,若是不一样判断是不是红黑树,若是是则进行红黑树查找,若是不是则循环链表,若是遍历完整个链表都没有找到相同的元素,就建立一个新的元素放到链表的最后,若是找到就返回元素的值,最后再判断一次数组的大小是否超过阀值,若是超过的话就要进行一个扩容。
resize 方法以下
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
对旧的容量判断是否须要扩容,若是须要扩容,新的数据容量大小为原来的2倍(newThr = oldThr << 1; 假设oldThr为16,转换成2进制以后左移一位结果是32,若是再次扩容左移一位,结果是64 )。算出新的容量大小时候先建立指定大小的空数组,而后将原来的数组数据复制过来,轮询原数组,利用扰动函数从新计算出位置,若是不是链表就直接放入,若是是链表以及红黑树,则就相应的方法复制数据。
我在 另外一篇文中 具体说明了。