Linux下面的IO模型

1. Linux下的五种I/O模型mysql

阻塞I/O模型:

        一直阻塞      应用程序调用一个IO函数,致使应用程序阻塞,等待数据准备好。 若是数据没有准备好,一直等待….数据准备好了,从内核拷贝到用户空间,IO函数返回成功指示。linux

咱们 第一次接触到的网络编程都是从 listen()send()recv()等接口开始的。使用这些接口能够很方便的构建服务器 /客户机的模型。算法

在调用recv()/recvfrom()函数时,发生在内核中等待数据和复制数据的过程。sql

当调用recv()函数时,系统首先查是否有准备好的数据。若是数据没有准备好,那么系统就处于等待状态。当数据准备好后,将数据从系统缓冲区复制到用户空间,而后该函数返回。在套接应用程序中,当调用recv()函数时,未必用户空间就已经存在数据,那么此时recv()函数就会处于等待状态。数据库

     当使用socket()函数和WSASocket()函数建立套接字时,默认的套接字都是阻塞的。这意味着当调用Windows Sockets API不能当即完成时,线程处于等待状态,直到操做完成。apache

    并非全部Windows Sockets API以阻塞套接字为参数调用都会发生阻塞。例如,以阻塞模式的套接字为参数调用bind()、listen()函数时,函数会当即返回。将可能阻塞套接字的Windows Sockets API调用分为如下四种:编程

    1.输入操做: recv()、recvfrom()、WSARecv()和WSARecvfrom()函数。以阻塞套接字为参数调用该函数接收数据。若是此时套接字缓冲区内没有数据可读,则调用线程在数据到来前一直睡眠。数组

    2.输出操做: send()、sendto()、WSASend()和WSASendto()函数。以阻塞套接字为参数调用该函数发送数据。若是套接字缓冲区没有可用空间,线程会一直睡眠,直到有空间。缓存

    3.接受链接:accept()和WSAAcept()函数。以阻塞套接字为参数调用该函数,等待接受对方的链接请求。若是此时没有链接请求,线程就会进入睡眠状态。安全

   4.外出链接:connect()和WSAConnect()函数。对于TCP链接,客户端以阻塞套接字为参数,调用该函数向服务器发起链接。该函数在收到服务器的应答前,不会返回。这意味着TCP链接总会等待至少到服务器的一次往返时间。

阻 塞模式套接字的不足表现为,在大量创建好的套接字线程之间进行通讯时比较困难。当使用“生产者-消费者”模型开发网络程序时,为每一个套接字都分别分配一个 读线程、一个处理数据线程和一个用于同步的事件,那么这样无疑加大系统的开销。其最大的缺点是当但愿同时处理大量套接字时,将无从下手,其扩展性不好.

      阻塞模式给网络编程带来了一个很大的问题,如在调用 send()的同时,线程将被阻塞,在此期间,线程将没法执行任何运算或响应任何的网络请求。这给多客户机、多业务逻辑的网络编程带来了挑战。这时,咱们可能会选择多线程的方式来解决这个问题。

 

       应对多客户机的网络应用,最简单的解决方式是在服务器端使用多线程(或多进程)。多线程(或多进程)的目的是让每一个链接都拥有独立的线程(或进程),这样任何一个链接的阻塞都不会影响其余的链接。

       具体使用多进程仍是多线程,并无一个特定的模式。传统意义上,进程的开销要远远大于线程,因此,若是须要同时为较多的客户机提供服务,则不推荐使用多进程;若是单个服务执行体须要消耗较多的 CPU 资源,譬如须要进行大规模或长时间的数据运算或文件访问,则进程较为安全。一般,使用 pthread_create () 建立新线程,fork() 建立新进程。

      多线程/进程服务器同时为多个客户机提供应答服务。模型以下:

       

    主线程持续等待客户端的链接请求,若是有链接,则建立新线程,并在新线程中提供为前例一样的问答服务。

 

      上述多线程的服务器模型彷佛完美的解决了为多个客户机提供问答服务的要求,但其实并不尽然。若是要同时响应成百上千路的链接请求,则不管多线程仍是多进程都会严重占据系统资源,下降系统对外界响应效率,而线程与进程自己也更容易进入假死状态。

       由此可能会考虑使用“线程池”或“链接池”。“线程池”旨在减小创 建和销毁线程的频率,其维持必定合理数量的线程,并让空闲的线程从新承担新的执行任务。“链接池”维持链接的缓存池,尽可能重用已有的链接、减小建立和关闭 链接的频率。这两种技术均可以很好的下降系统开销,都被普遍应用不少大型系统,如apache,MySQL数据库等。

      可是,“线程池”和“链接池”技术也只是在必定程度上缓解了频繁调用 IO 接口带来的资源占用。并且,所谓“池”始终有其上限,当请求大大超过上限时,“池”构成的系统对外界的响应并不比没有池的时候效果好多少。因此使用“池” 必须考虑其面临的响应规模,并根据响应规模调整“池”的大小。

      对应上例中的所面临的可能同时出现的上千甚至上万次的客户端请求,“线程池”或“链接池”或许能够缓解部分压力,可是不能解决全部问题。

非阻塞IO模型 :

 

       屡次系统调用,并立刻返回在数据拷贝的过程当中,进程是阻塞的

      

       咱们把一个SOCKET接口设置为非阻塞就是告诉内核,当所请求的I/O操做没法完成时,不要将进程睡眠,而是返回一个错误。这样咱们的I/O操做函数将不断的测试数据是否已经准备好,若是没有准备好,继续测试,直到数据准备好为止。在这个不断测试的过程当中,会大量的占用CPU的时间。

    把SOCKET设 置为非阻塞模式,即通知系统内核:在调用Windows Sockets API时,不要让线程睡眠,而应该让函数当即返回。在返回时,该函数返回一个错误代码。图所示,一个非阻塞模式套接字屡次调用recv()函数的过程。前 三次调用recv()函数时,内核数据尚未准备好。所以,该函数当即返回WSAEWOULDBLOCK错误代码。第四次调用recv()函数时,数据已 经准备好,被复制到应用程序的缓冲区中,recv()函数返回成功指示,应用程序开始处理数据。

     当使用socket()函数和WSASocket()函数建立套接字时,默认都是阻塞的。在建立套接字以后,经过调用ioctlsocket()函数,将该套接字设置为非阻塞模式。Linux下的函数是:fcntl().
    套接字设置为非阻塞模式后,在调用Windows Sockets API函数时,调用函数会当即返回。大多数状况下,这些函数调用都会调用“失败”,并返回WSAEWOULDBLOCK错误代码。说明请求的操做在调用期 间内没有时间完成。一般,应用程序须要重复调用该函数,直到得到成功返回代码。

    须要说明的是并不是全部的Windows Sockets API在非阻塞模式下调用,都会返回WSAEWOULDBLOCK错误。例如,以非阻塞模式的套接字为参数调用bind()函数时,就不会返回该错误代 码。固然,在调用WSAStartup()函数时更不会返回该错误代码,由于该函数是应用程序第一调用的函数,固然不会返回这样的错误代码。

    要将套接字设置为非阻塞模式,除了使用ioctlsocket()函数以外,还可使用WSAAsyncselect()和WSAEventselect()函数。当调用该函数时,套接字会自动地设置为非阻塞方式。

    要完成这样的操做,有人使用MSG_PEEK标志调用recv()函数查看缓冲区中是否有数据可读。一样,这种方法也很差。由于该作法对系统形成的开销是 很大的,而且应用程序至少要调用recv()函数两次,才能实际地读入数据。较好的作法是,使用套接字的“I/O模型”来判断非阻塞套接字是否可读可写。

    非阻塞模式套接字与阻塞模式套接字相比,不容易使用。使用非阻塞模式套接字,须要编写更多的代码,以便在每一个Windows Sockets API函数调用中,对收到的WSAEWOULDBLOCK错误进行处理。所以,非阻塞套接字便显得有些难于使用。

    可是,非阻塞套接字在控制创建的多个链接,在数据的收发量不均,时间不定时,明显具备优点。这种套接字在使用上存在必定难度,但只要排除了这些困难,它在 功能上仍是很是强大的。一般状况下,可考虑使用套接字的“I/O模型”,它有助于应用程序经过异步方式,同时对一个或多个套接字的通讯加以管理。

        I/O复用模型会用到select、poll、epoll函数,这几个函数也会使进程阻塞,可是和阻塞I/O所不一样的的,这两个函数能够同时阻塞多个I /O操做。并且能够同时对多个读操做,多个写操做的I/O函数进行检测,直到有数据可读或可写时,才真正调用I/O操做函数

 

    两次调用,两次返回;

    首先咱们容许套接口进行信号驱动I/O,并安装一个信号处理函数,进程继续运行并不阻塞。当数据准备好时,进程会收到一个SIGIO信号,能够在信号处理函数中调用I/O操做函数处理数据。

  简介:数据拷贝的时候进程无需阻塞。

     当一个异步过程调用发出后,调用者不能马上获得结果。实际处理这个调用的部件在完成后,经过状态、通知和回调来通知调用者的输入输出操做

5个I/O模型的比较:

3. select、poll、epoll简介

.NET/hguisu/article/details/38638183#t5

 

epoll模型:http://blog.csdn.net/hguisu/article/details/38638183#t12

epoll跟select都能提供多路I/O复用的解决方案。在如今的Linux内核里有都可以支持,其中epoll是Linux所特有,而select则应该是POSIX所规定,通常操做系统均有实现

 

select:

select本质上是经过设置或者检查存放fd标志位的数据结构来进行下一步处理。这样所带来的缺点是:

一、 单个进程可监视的fd数量被限制,即能监听端口的大小有限。

      通常来讲这个数目和系统内存关系很大,具体数目能够cat /proc/sys/fs/file-max察看。32位机默认是1024个。64位机默认是2048.

二、 对socket进行扫描时是线性扫描,即采用轮询的方法,效率较低:

       当套接字比较多的时候,每次select()都要经过遍历FD_SETSIZE个Socket来完成调度,无论哪一个Socket是活跃的,都遍历一遍。这 会浪费不少CPU时间。若是能给套接字注册某个回调函数,当他们活跃时,自动完成相关操做,那就避免了轮询,这正是epoll与kqueue作的。

三、须要维护一个用来存放大量fd的数据结构,这样会使得用户空间和内核空间在传递该结构时复制开销大

poll:

poll 本质上和select没有区别,它将用户传入的数组拷贝到内核空间,而后查询每一个fd对应的设备状态,若是设备就绪则在设备等待队列中加入一项并继续遍 历,若是遍历完全部fd后没有发现就绪设备,则挂起当前进程,直到设备就绪或者主动超时,被唤醒后它又要再次遍历fd。这个过程经历了屡次无谓的遍历。

它没有最大链接数的限制,缘由是它是基于链表来存储的,可是一样有一个缺点:

一、大量的fd的数组被总体复制于用户态和内核地址空间之 间,而无论这样的复制是否是有意 义。                                                                                                                                      二、poll还有一个特色是“水平触发”,若是报告了fd后,没有被处理,那么下次poll时会再次报告该fd。

epoll:

epoll 支持水平触发和边缘触发,最大的特色在于边缘触发,它只告诉进程哪些fd刚刚变为就需态,而且只会通知一次。还有一个特色是,epoll使用“事件”的就 绪通知方式,经过epoll_ctl注册fd,一旦该fd就绪,内核就会采用相似callback的回调机制来激活该fd,epoll_wait即可以收 到通知

即Epoll最大的优势就在于它只管你“活跃”的链接,而跟链接总数无关,所以在实际的网络环境中,Epoll的效率就会远远高于select和poll。

三、 内存拷贝,利用mmap()文件映射内存加速与内核空间的消息传递;即epoll使用mmap减小复制开销。

select、poll、epoll 区别总结:

一、支持一个进程所能打开的最大链接数

select

单个进程所能打开的最大链接数有FD_SETSIZE宏定 义,其大小是32个整数的大小(在32位的机器上,大小就是32*32,同理64位机器上FD_SETSIZE为32*64),固然咱们能够对进行修改, 而后从新编译内核,可是性能可能会受到影响,这须要进一步的测试。

poll

poll本质上和select没有区别,可是它没有最大链接数的限制,缘由是它是基于链表来存储的

epoll

虽然链接数有上限,可是很大,1G内存的机器上能够打开10万左右的链接,2G内存的机器能够打开20万左右的链接

二、FD剧增后带来的IO效率问题

select

由于每次调用时都会对链接进行线性遍历,因此随着FD的增长会形成遍历速度慢的“线性降低性能问题”。

poll

同上

epoll

由于epoll内核中实现是根据每一个fd上的 callback函数来实现的,只有活跃的socket才会主动调用callback,因此在活跃socket较少的状况下,使用epoll没有前面二者 的线性降低的性能问题,可是全部socket都很活跃的状况下,可能会有性能问题。

三、 消息传递方式

select

内核须要将消息传递到用户空间,都须要内核拷贝动做

poll

同上

epoll

epoll经过内核和用户空间共享一块内存来实现的。

总结:

综上,在选择select,poll,epoll时要根据具体的使用场合以及这三种方式的自身特色。

一、表面上看epoll的性能最好,可是在链接数少而且链接都十分活跃的状况下,select和poll的性能可能比epoll好,毕竟epoll的通知机制须要不少函数回调。

二、 同步/异步与阻塞/非阻塞常常看到是成对出现:

同步阻塞,异步非阻塞,同步非阻塞

相关文章
相关标签/搜索