数据可视化:TensorboardX安装及使用
tensorboard做为Tensorflow中强大的可视化工具:
https://github.com/tensorflow/tensorboard,已经被普遍使用
html
但针对其余框架,例如Pytorch,以前一直没有这么好的可视化工具可用,好在目前Pytorch也能够支持Tensorboard了,那就是经过使用tensorboardX,真是Pytorcher的福利!python
Github传送门:Tensorboard , TensorboardX
能够看到 tensorboardX完美支持了tensorboard经常使用的function
git
下面介绍tensorboardX安装和基本使用方法:github
tensorboardX安装:
由于tensorboardX是对tensorboard进行了封装后,开放出来使用,因此必须先安装tensorboard, 再安装tensorboardX,
(而若是不须要,能够不安装tensorflow,只是有些功能会受限)
web
直接使用pip/conda安装:chrome
- pip install tensorboard
- pip install tensorboardX
tensorboardX使用:
安装好后,剩下的和tensorboard使用方法基本一致,
先跑一遍example中的实例,
json
- git clone https://github.com/lanpa/tensorboardX.git
能够看到example 文件夹有不少实例
运行demo.py:
浏览器
- python demo.py
demo.py运行后,会在该目录生成默认的runs文件夹,里面存储了Demo程序写入的log文件(经过pytorch),这样就能够经过tensorboard对这些数据可视化了:markdown
- tensorboard --logdir runs
和往常同样启动tensorboard,web组件会在localhost搭建一个Port默认为6006框架
这时候打开浏览器(最好用chrome)进入http://localhost:6006/ ,就能够查看数据,仍是熟悉的操做:
查看scalars:
images:
projector:
distributions:
Histograms:
pr curves:
etc… 具体tensorboard各项功能和使用能够查看tensorboard官方教程:
https://tensorflow.google.cn/tensorboard/get_started
其中demo.py以下,能够看到代码上tensorboardX使用方法和tensorboard基本一致,tensorboardX经过SummaryWriter 类操做log data(也只有这一个类),而且经过add_xxxx记录各种data(如图表、直方图、图片,标量等等),(对应tensorflow1.0以后版本改为了tensorflow.summary.FileWriter, add_xxxx)
# demo.py import torch import torchvision.utils as vutils import numpy as np import torchvision.models as models from torchvision import datasets from tensorboardX import SummaryWriter resnet18 = models.resnet18(False) writer = SummaryWriter() sample_rate = 44100 freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] for n_iter in range(100): dummy_s1 = torch.rand(1) dummy_s2 = torch.rand(1) # data grouping by `slash` writer.add_scalar('data/scalar1', dummy_s1[0], n_iter) writer.add_scalar('data/scalar2', dummy_s2[0], n_iter) writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter), 'xcosx': n_iter * np.cos(n_iter), 'arctanx': np.arctan(n_iter)}, n_iter) dummy_img = torch.rand(32, 3, 64, 64) # output from network if n_iter % 10 == 0: x = vutils.make_grid(dummy_img, normalize=True, scale_each=True) writer.add_image('Image', x, n_iter) dummy_audio = torch.zeros(sample_rate * 2) for i in range(x.size(0)): # amplitude of sound should in [-1, 1] dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate)) writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate) writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter) for name, param in resnet18.named_parameters(): writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter) # needs tensorboard 0.4RC or later writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter) dataset = datasets.MNIST('mnist', train=False, download=True) images = dataset.test_data[:100].float() label = dataset.test_labels[:100] features = images.view(100, 784) writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1)) # export scalar data to JSON for external processing writer.export_scalars_to_json("./all_scalars.json") writer.close()