以前看过的机器学习课程。本文是相关课程笔记、习题答案、做业源码的电梯。html
课程地址和软件下载git
Coursera链接不上(视频没法播放),修改hosts文件github
Week1网络
课程笔记 Lecture 1_Introduction and Basic Concepts 介绍和基本概念app
课程笔记 Lecture 2_Linear regression with one variable 单变量线性回归机器学习
课程笔记 Lecture 3_Linear Algebra Review 线性代数ide
Week2工具
课程笔记 Lecture 4_Linear Regression with Multiple Variables 多变量线性回归学习
课程笔记 Lecture 5 Octave Tutorial 教程
Week3
课程笔记 Lecture 6_Logistic Regression 逻辑回归
课程笔记 Lecture 7 Regularization 正则化
Week4
课程笔记 Lecture 8_Neural Networks Representation 神经网络的表述
Week5
课程笔记 Lecture 9_Neural Networks learning 神经网络学习
Week6
课程笔记 Lecture 10_Advice for applying machine learning 机器学习应用建议
课程笔记 Lecture 11_Machine Learning System Design 机器学习系统设计
Week7
课程笔记 Lecture 12_Support Vector Machines 支持向量机
Week8
课程笔记 Lecture 14_Dimensionality Reduction 降维
Week9
课程笔记 Lecture 15_Anomaly Detection异常检测
课程笔记 Lecture 16_Recommender Systems 推荐系统
Week10
课程笔记 Lecture 17_Large Scale Machine Learning 大规模机器学习
课程笔记 Lecture 18_Photo OCR 应用实例:图片文字识别
Week 1 习题—Linear Regression with One Variable 单变量线性回归
Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归
Week 3 习题—Logistic Regression 逻辑回归
Week 4 习题—Neural Networks 神经网络
Week 5 习题—Neural Networks learning 神经网络学习
Week 6 习题—Advice for applying machine learning 机器学习应用建议
Programming Exercise 3—多分类逻辑回归和神经网络
Programming Exercise 4—反向传播神经网络
课程笔记 Part1:线性回归 Linear Regression
课程笔记 part2:分类和逻辑回归 Classificatiion and logistic regression
课程笔记 part3:广义线性模型 Greneralized Linear Models (GLMs)
课程地址:
编程习题:
笔记:
原文出处:https://www.cnblogs.com/maxiaodoubao/p/10184428.html