linux驱动入门之LCD驱动

硬件环境:tq2440 4.3 LCD node

软件环境:Fedora17 arm-linux-gcc-4.3.2linux

内核版本:2.6.39编程

以韦东山老师视频为基础,加入本身的实践缓存

1.基础知识(转载,原做者不详,感谢先):

1. LCD工做的硬件需求:
   要使一块LCD正常的显示文字或图像,不只须要LCD驱动器,并且还须要相应的LCD控制器。在一般状况下,生产厂商把LCD驱动器会以COF/COG的形式与LCD玻璃基板制做在一块儿,而LCD控制器则是由外部的电路来实现,如今不少的MCU内部都集成了LCD控制器,如S3C2410/2440等。经过LCD控制器就能够产生LCD驱动器所须要的控制信号来控制STN/TFT屏了。
 
2. S3C2440内部LCD控制器结构图:
咱们根据数据手册来描述一下这个集成在S3C2440内部的LCD控制器:
a:LCD控制器由REGBANK、LCDCDMA、TIMEGEN、VIDPRCS寄存器组成;
b:REGBANK由17个可编程的寄存器组和一块256*16的调色板内存组成,它们用来配置LCD控制器的;
c:LCDCDMA是一个专用的DMA,它能自动地把在侦内存中的视频数据传送到LCD驱动器,经过使用这个DMA通道,视频数据在不须要CPU的干预的状况下显示在LCD屏上;
d:VIDPRCS接收来自LCDCDMA的数据,将数据转换为合适的数据格式,好比说4/8位单扫,4位双扫显示模式,而后经过数据端口VD[23:0]传送视频数据到LCD驱动器;
e:TIMEGEN由可编程的逻辑组成,他生成LCD驱动器须要的控制信号,好比VSYNC、HSYNC、VCLK和LEND等等,而这些控制信号又与REGBANK寄存器组中的LCDCON1/2/3/4/5的配置密切相关,经过不一样的配置,TIMEGEN就能产生这些信号的不一样形态,从而支持不一样的LCD驱动器(即不一样的STN/TFT屏)。
 
3. 常见TFT屏工做时序分析:
LCD提供的外部接口信号:

VSYNC/VFRAME/STV:垂直同步信号(TFT)/帧同步信号(STN)/SEC TFT信号;
HSYNC/VLINE/CPV:水平同步信号(TFT)/行同步脉冲信号(STN)/SEC TFT信号;
VCLK/LCD_HCLK:象素时钟信号(TFT/STN)/SEC TFT信号;
VD[23:0]:LCD像素数据输出端口(TFT/STN/SEC TFT);
VDEN/VM/TP:数据使能信号(TFT)/LCD驱动交流偏置信号(STN)/SEC TFT 信号;
LEND/STH:行结束信号(TFT)/SEC TFT信号;
LCD_LPCOE:SEC TFT OE信号;
LCD_LPCREV:SEC TFT REV信号;
LCD_LPCREVB:SEC TFT REVB信号。
数据结构

 
全部显示器显示图像的原理都是从上到下,从左到右的。这是什么意思呢?这么说吧,一副图像能够看作是一个矩形,由不少排列整齐的点一行一行组成,这些点称之为像素。那么这幅图在LCD上的显示原理就是:

A:显示指针从矩形左上角的第一行第一个点开始,一个点一个点的在LCD上显示,在上面的时序图上用时间线表示就为VCLK,咱们称之为像素时钟信号;
B:当显示指针一直显示到矩形的右边就结束这一行,那么这一行的动做在上面的时序图中就称之为1 Line;
C:接下来显示指针又回到矩形的左边从第二行开始显示,注意,显示指针在从第一行的右边回到第二行的左边是须要必定的时间的,咱们称之为行切换;
D:如此类推,显示指针就这样一行一行的显示至矩形的右下角才把一副图显示完成。所以,这一行一行的显示在时间线上看,就是时序图上的HSYNC;
E:然而,LCD的显示并非对一副图像快速的显示一下,为了持续和稳定的在LCD上显示,就须要切换到另外一幅图上(另外一幅图能够和上一副图同样或者不同,目的只是为了将图像持续的显示在LCD上)。那么这一副一副的图像就称之为帧,在时序图上就表示为1 Frame,所以从时序图上能够看出1 Line只是1 Frame中的一行;
F:一样的,在帧与帧切换之间也是须要必定的时间的,咱们称之为帧切换,那么LCD整个显示的过程在时间线上看,就可表示为时序图上的VSYNC。
app

 
上面时序图上各时钟延时参数的含义以下:(这些参数的值,LCD产生厂商会提供相应的数据手册)

VBPD(vertical back porch):表示在一帧图像开始时,垂直同步信号之后的无效的行数,对应驱动中的upper_margin;
VFBD(vertical front porch):表示在一帧图像结束后,垂直同步信号之前的无效的行数,对应驱动中的lower_margin;
VSPW(vertical sync pulse width):表示垂直同步脉冲的宽度,用行数计算,对应驱动中的vsync_len;
HBPD(horizontal back porch):表示从水平同步信号开始到一行的有效数据开始之间的VCLK的个数,对应驱动中的left_margin;
HFPD(horizontal front porth):表示一行的有效数据结束到下一个水平同步信号开始之间的VCLK的个数,对应驱动中的right_margin;
HSPW(horizontal sync pulse width):表示水平同步信号的宽度,用VCLK计算,对应驱动中的hsync_len;
ide

 
对于以上这些参数的值将分别保存到REGBANK寄存器组中的LCDCON1/2/3/4/5寄存器中:(对寄存器的操做请查看S3c2440数据手册LCD部分)

LCDCON1:17 - 8位CLKVAL 
          6 - 5位扫描模式(对于STN屏:4位单/双扫、8位单扫) 
          4 - 1位色位模式(1BPP、8BPP、16BPP等)

LCDCON2:31 - 24位VBPD 
         23 - 14位LINEVAL 
         13 - 6位VFPD 
          5 - 0位VSPW

LCDCON3:25 - 19位HBPD 
         18 - 8位HOZVAL 
          7 - 0位HFPD

LCDCON4: 7 - 0位HSPW

LCDCON5:
函数

 
4. 帧缓冲(FrameBuffer):
   帧缓冲是Linux为显示设备提供的一个接口,它把一些显示设备描述成一个缓冲区,容许应用程序经过FrameBuffer定义好的接口访问这些图形设备,从而不用去关心具体的硬件细节。对于帧缓冲设备而言,只要在显示缓冲区与显示点对应的区域写入颜色值,对应的颜色就会自动的在屏幕上显示。下面来看一下在不一样色位模式下缓冲区与显示点的对应关系:

、帧缓冲(FrameBuffer)设备驱动结构
 
      帧缓冲设备为标准的字符型设备,在Linux中主设备号29,定义在/include/linux/major.h中的FB_MAJOR,次设备号定义帧缓冲的个数,最大容许有32个FrameBuffer,定义在/include/linux/fb.h中的FB_MAX,对应于文件系统下/dev/fb%d设备文件。

1. 帧缓冲设备驱动在Linux子系统中的结构以下:

咱们从上面这幅图看,帧缓冲设备在Linux中也能够看作是一个完整的子系统,大致由fbmem.c和xxxfb.c组成。向上给应用程序提供完善的设备文件操做接口(即对FrameBuffer设备进行read、write、ioctl等操做),接口在Linux提供的fbmem.c文件中实现;向下提供了硬件操做的接口,只是这些接口Linux并无提供实现,由于这要根据具体的LCD控制器硬件进行设置,因此这就是咱们要作的事情了(即xxxfb.c部分的实现)。fetch

2. 帧缓冲相关的重要数据结构:
   从帧缓冲设备驱动程序结构看,该驱动主要跟fb_info结构体有关,该结构体记录了帧缓冲设备的所有信息,包括设备的设置参数、状态以及对底层硬件操做的函数指针。在Linux中,每个帧缓冲设备都必须对应一个fb_info,fb_info在/linux/fb.h中的定义以下:(只列出重要的一些)
spa

struct fb_info {
    int node;
    int flags;
    struct fb_var_screeninfo var;/*LCD可变参数结构体*/
    struct fb_fix_screeninfo fix;/*LCD固定参数结构体*/
    struct fb_monspecs monspecs; /*LCD显示器标准*/
    struct work_struct queue;    /*帧缓冲事件队列*/
    struct fb_pixmap pixmap;     /*图像硬件mapper*/
    struct fb_pixmap sprite;     /*光标硬件mapper*/
    struct fb_cmap cmap;         /*当前的颜色表*/
    struct fb_videomode *mode;   /*当前的显示模式*/

#ifdef CONFIG_FB_BACKLIGHT
    
struct backlight_device *bl_dev;/*对应的背光设备*/
    struct mutex bl_curve_mutex;
    u8 bl_curve[FB_BACKLIGHT_LEVELS];/*背光调整*/
#endif
#ifdef CONFIG_FB_DEFERRED_IO
    struct delayed_work deferred_work;
    struct fb_deferred_io *fbdefio;
#endif

    struct fb_ops *fbops/*对底层硬件操做的函数指针*/
    struct device *device;
    struct device *dev;   /*fb设备*/
    int class_flag;    
#ifdef CONFIG_FB_TILEBLITTING
    struct fb_tile_ops *tileops; /*图块Blitting*/
#endif
    char __iomem *screen_base;   /*虚拟基地址*/
    unsigned long screen_size;   /*LCD IO映射的虚拟内存大小*/ 
    void *pseudo_palette;        /*伪16色颜色表*/ 
#define FBINFO_STATE_RUNNING    0
#define FBINFO_STATE_SUSPENDED  1
    u32 state;  /*LCD的挂起或恢复状态*/
    void *fbcon_par;
    void *par;    
};

其中,比较重要的成员有struct fb_var_screeninfo var、struct fb_fix_screeninfo fix和structfb_ops *fbops,他们也都是结构体。下面咱们一个一个的来看。

fb_var_screeninfo结构体主要记录用户能够修改的控制器的参数,好比屏幕的分辨率和每一个像素的比特数等,该结构体定义以下:

struct fb_var_screeninfo {
    __u32 xres;                /*可见屏幕一行有多少个像素点*/
    __u32 yres;                /*可见屏幕一列有多少个像素点*/
    __u32 xres_virtual;        /*虚拟屏幕一行有多少个像素点*/        
    __u32 yres_virtual;        /*虚拟屏幕一列有多少个像素点*/
    __u32 xoffset;             /*虚拟到可见屏幕之间的行偏移*/
    __u32 yoffset;             /*虚拟到可见屏幕之间的列偏移*/
    __u32 bits_per_pixel;      /*每一个像素的位数即BPP*/
    __u32 grayscale;           /*非0时,指的是灰度*/

    struct fb_bitfield red;    /*fb缓存的R位域*/
    struct fb_bitfield green;  /*fb缓存的G位域*/
    struct fb_bitfield blue;   /*fb缓存的B位域*/
    struct fb_bitfield transp; /*透明度*/    

    __u32 nonstd;              /* != 0 非标准像素格式*/
    __u32 activate;                
    __u32 height;              /*高度*/
    __u32 width;               /*宽度*/
    __u32 accel_flags;    

    /*定时:除了pixclock自己外,其余的都以像素时钟为单位*/
    __u32 pixclock;            /*像素时钟(皮秒)*/
    __u32 left_margin;         /*行切换,从同步到绘图之间的延迟*/
    __u32 right_margin;        /*行切换,从绘图到同步之间的延迟*/
    __u32 upper_margin;        /*帧切换,从同步到绘图之间的延迟*/
    __u32 lower_margin;        /*帧切换,从绘图到同步之间的延迟*/
    __u32 hsync_len;           /*水平同步的长度*/
    __u32 vsync_len;           /*垂直同步的长度*/
    __u32 sync;
    __u32 vmode;
    __u32 rotate;
    __u32 reserved[5];         /*保留*/
};

fb_fix_screeninfo结构体又主要记录用户不能够修改的控制器的参数,好比屏幕缓冲区的物理地址和长度等,该结构体的定义以下:

struct fb_fix_screeninfo {
    char id[16];                /*字符串形式的标示符 */
    unsigned long smem_start;   /*fb缓存的开始位置 */
    __u32 smem_len;             /*fb缓存的长度 */
    __u32 type;                 /*看FB_TYPE_* */
    __u32 type_aux;             /*分界*/
    __u32 visual;               /*看FB_VISUAL_* */ 
    __u16 xpanstep;             /*若是没有硬件panning就赋值为0 */
    __u16 ypanstep;             /*若是没有硬件panning就赋值为0 */
    __u16 ywrapstep;            /*若是没有硬件ywrap就赋值为0 */
    __u32 line_length;          /*一行的字节数 */
    unsigned long mmio_start;   /*内存映射IO的开始位置*/
    __u32 mmio_len;             /*内存映射IO的长度*/
    __u32 accel;
    __u16 reserved[3];          /*保留*/
};

fb_ops结构体是对底层硬件操做的函数指针,该结构体中定义了对硬件的操做有:(这里只列出了经常使用的操做)

struct fb_ops {

    struct module *owner;

    
//检查可变参数并进行设置
    int (*fb_check_var)(struct fb_var_screeninfo *var, struct fb_info *info);

    
//根据设置的值进行更新,使之有效
    int (*fb_set_par)(struct fb_info *info);

    
//设置颜色寄存器
    int (*fb_setcolreg)(unsigned regno, unsigned red, unsigned green,
             unsigned blue, unsigned transp, struct fb_info *info);

    
//显示空白
    int (*fb_blank)(int blank, struct fb_info *info);

    
//矩形填充
    void (*fb_fillrect) (struct fb_info *info, const struct fb_fillrect *rect);

    
//复制数据
    void (*fb_copyarea) (struct fb_info *info, const struct fb_copyarea *region);

    
//图形填充
    void (*fb_imageblit) (struct fb_info *info, const struct fb_image *image);
};

3. 帧缓冲设备做为平台设备(本文代码中没有用到)
   在S3C2440中,LCD控制器被集成在芯片的内部做为一个相对独立的单元,因此Linux把它看作是一个平台设备,故在内核代码/arch/arm/plat-s3c24xx/devs.c中定义有LCD相关的平台设备及资源,代码以下:

/* LCD Controller */

//LCD控制器的资源信息
static struct resource s3c_lcd_resource[] = {
    [0] = {
        .start = S3C24XX_PA_LCD
//控制器IO端口开始地址
        .end = S3C24XX_PA_LCD + S3C24XX_SZ_LCD - 1,//控制器IO端口结束地址
        .flags = IORESOURCE_MEM,//标识为LCD控制器IO端口,在驱动中引用这个就表示引用IO端口
    },
    [1] = {
        .start = IRQ_LCD
,//LCD中断
        .end = IRQ_LCD,
        .flags = IORESOURCE_IRQ
,//标识为LCD中断
    }
};

static u64 s3c_device_lcd_dmamask = 0xffffffffUL;

struct platform_device s3c_device_lcd = {
    .name         = "s3c2410-lcd"
,//做为平台设备的LCD设备名
    .id         = -1,
    .num_resources = ARRAY_SIZE(s3c_lcd_resource)
,//资源数量
    .resource     = s3c_lcd_resource,//引用上面定义的资源
    .dev = {
        .dma_mask = &s3c_device_lcd_dmamask,
        .coherent_dma_mask = 0xffffffffUL
    }
};

EXPORT_SYMBOL(s3c_device_lcd)
;//导出定义的LCD平台设备,好在mach-smdk2440.c的smdk2440_devices[]中添加到平台设备列表中


   除此以外,Linux还在/arch/arm/mach-s3c2410/include/mach/fb.h中为LCD平台设备定义了一个s3c2410fb_mach_info结构体,该结构体主要是记录LCD的硬件参数信息(好比该结构体的s3c2410fb_display成员结构中就用于记录LCD的屏幕尺寸、屏幕信息、可变的屏幕参数、LCD配置寄存器等),这样在写驱动的时候就直接使用这个结构体。下面,咱们来看一下内核是若是使用这个结构体的。在/arch/arm/mach-s3c2440/mach-smdk2440.c中定义有:

/* LCD driver info */

//LCD硬件的配置信息,注意这里我使用的LCD是NEC 3.5寸TFT屏,这些参数要根据具体的LCD屏进行设置
static struct s3c2410fb_display smdk2440_lcd_cfg __initdata = {

    //这个地方的设置是配置LCD寄存器5,这些宏定义在regs-lcd.h中,计算后二进制为:111111111111,而后对照数据手册上LCDCON5的各位来看,注意是从右边开始
    .lcdcon5 = S3C2410_LCDCON5_FRM565 |
               S3C2410_LCDCON5_INVVLINE |
               S3C2410_LCDCON5_INVVFRAME |
               S3C2410_LCDCON5_PWREN |
               S3C2410_LCDCON5_HWSWP,

    .type    = S3C2410_LCDCON1_TFT
,//TFT类型

    /* NEC 3.5'' */
    .width        = 240
,//屏幕宽度
    .height       = 320,//屏幕高度

    //如下一些参数在上面的时序图分析中讲到过,各参数的值请跟据具体的LCD屏数据手册结合上面时序分析来设定
    .pixclock     = 100000,//像素时钟
    .xres         = 240,//水平可见的有效像素
    .yres         = 320,//垂直可见的有效像素
    .bpp          = 16,//色位模式
    .left_margin  = 19,//行切换,从同步到绘图之间的延迟
    .right_margin = 36,//行切换,从绘图到同步之间的延迟
    .hsync_len    = 5,//水平同步的长度
    .upper_margin = 1,//帧切换,从同步到绘图之间的延迟
    .lower_margin = 5,//帧切换,从绘图到同步之间的延迟
    .vsync_len    = 1,//垂直同步的长度
};

static struct s3c2410fb_mach_info smdk2440_fb_info __initdata = {
    .displays        = &smdk2440_lcd_cfg
,//应用上面定义的配置信息
    .num_displays    = 1,
    .default_display = 0,

    .gpccon          = 0xaaaa555a,//将GPC0、GPC1配置成LEND和VCLK,将GPC8-15配置成VD0-7,其余配置成普通输出IO口
    .gpccon_mask     = 0xffffffff,
    .gpcup           = 0x0000ffff,//禁止GPIOC的上拉功能
    .gpcup_mask      = 0xffffffff,
    .gpdcon          = 0xaaaaaaaa,//将GPD0-15配置成VD8-23
    .gpdcon_mask     = 0xffffffff,
    .gpdup           = 0x0000ffff,//禁止GPIOD的上拉功能
    .gpdup_mask      = 0xffffffff,

    .lpcsel          = 0x0,//这个是三星TFT屏的参数,这里不用
};

如今知道当初移植linux LCD驱动时,这些参数是怎么设置的了

注意:可能有不少朋友不知道上面红色部分的参数是作什么的,其值又是怎么设置的?其实它是跟你的开发板LCD控制器密切相关的,看了下面两幅图相信就大概知道他们是干什么用的:

上面第一幅图是开发板原理图的LCD控制器部分,第二幅图是S3c2440数据手册中IO端口C和IO端口D控制器部分。原理图中使用了GPC8-15和GPD0-15来用作LCD控制器VD0-VD23的数据端口,又分别使用GPC0、GPC1端口用作LCD控制器的LEND和VCLK信号,对于GPC2-7则是用作STN屏或者三星专业TFT屏的相关信号。然而,S3C2440的各个IO口并非单一的功能,都是复用端口,要使用他们首先要对他们进行配置。因此上面红色部分的参数就是把GPC和GPD的部分端口配置成LCD控制功能模式。

   从以上讲述的内容来看,要使LCD控制器支持其余的LCD屏,重要的是根据LCD的数据手册修改以上这些参数的值。下面,咱们再看一下在驱动中是若是引用到s3c2410fb_mach_info结构体的(注意上面讲的是在内核中如何使用的)。在mach-smdk2440.c中有:

//S3C2440初始化函数
static void __init smdk2440_machine_init(void)
{

    //调用该函数将上面定义的LCD硬件信息保存到平台数据中
    s3c24xx_fb_set_platdata(&smdk2440_fb_info);
    
    s3c_i2c0_set_platdata(NULL);

    platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));
    smdk_machine_init();
}

s3c24xx_fb_set_platdata定义在plat-s3c24xx/devs.c中:

void __init s3c24xx_fb_set_platdata(struct s3c2410fb_mach_info *pd)
{
    struct s3c2410fb_mach_info *npd;

    npd = kmalloc(sizeof(*npd), GFP_KERNEL);
    if (npd) {
        memcpy(npd, pd, sizeof(*npd));

        //这里就是将内核中定义的s3c2410fb_mach_info结构体数据保存到LCD平台数据中,因此在写驱动的时候就能够直接在平台数据中获取s3c2410fb_mach_info结构体的数据(即LCD各类参数信息)进行操做
        s3c_device_lcd.dev.platform_data = npd;
    } else {
        printk(KERN_ERR "no memory for LCD platform data/n");
    }
}

   这里再讲一个小知识:不知你们有没有留意,在平台设备驱动中,platform_data能够保存各自平台设备实例的数据,但这些数据的类型都是不一样的,为何均可以保存?这就要看看platform_data的定义,定义在/linux/device.h中,void *platform_data是一个void类型的指针,在Linux中void可保存任何数据类型。

2.代码:

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/wait.h>
#include <linux/platform_device.h>
#include <linux/clk.h>

#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/div64.h>

#include <asm/mach/map.h>
#include <mach/regs-lcd.h>
#include <mach/regs-gpio.h>
#include <mach/fb.h>

static int s3c_lcdfb_setcolreg(unsigned int regno, unsigned int red,
			     unsigned int green, unsigned int blue,
			     unsigned int transp, struct fb_info *info);


struct lcd_regs {
	unsigned long	lcdcon1;
	unsigned long	lcdcon2;
	unsigned long	lcdcon3;
	unsigned long	lcdcon4;
	unsigned long	lcdcon5;
    	unsigned long	lcdsaddr1;
    	unsigned long	lcdsaddr2;
    	unsigned long	lcdsaddr3;
    	unsigned long	redlut;
    	unsigned long	greenlut;
    	unsigned long	bluelut;
    	unsigned long	reserved[9];
    	unsigned long	dithmode;
    	unsigned long	tpal;
    	unsigned long	lcdintpnd;
    	unsigned long	lcdsrcpnd;
    	unsigned long	lcdintmsk;
    	unsigned long	lpcsel;
};

static struct fb_ops s3c_lcdfb_ops = {
	.owner		= THIS_MODULE,
	.fb_setcolreg	= s3c_lcdfb_setcolreg,
	.fb_fillrect	= cfb_fillrect,
	.fb_copyarea	= cfb_copyarea,
	.fb_imageblit	= cfb_imageblit,/* linux内核自带的驱动,须要加载,后面使用的时候会讲到 */
};


static struct fb_info *s3c_lcd;

static volatile unsigned long *gpccon;
static volatile unsigned long *gpdcon;
static volatile unsigned long *gpgcon;
static volatile struct lcd_regs* lcd_regs;
static u32 pseudo_palette[16];


/* from pxafb.c */
/* 这里使用的是linux自带的函数,直接copy的 */
static inline unsigned int chan_to_field(unsigned int chan, struct fb_bitfield *bf)
{
	chan &= 0xffff;
	chan >>= 16 - bf->length;
	return chan << bf->offset;
}


static int s3c_lcdfb_setcolreg(unsigned int regno, unsigned int red,
			     unsigned int green, unsigned int blue,
			     unsigned int transp, struct fb_info *info)
{
	unsigned int val;
	
	if (regno > 16)
		return 1;

	/* 用red,green,blue三原色构造出val */
	val  = chan_to_field(red,	&info->var.red);
	val |= chan_to_field(green, &info->var.green);
	val |= chan_to_field(blue,	&info->var.blue);
	
	//((u32 *)(info->pseudo_palette))[regno] = val;
	pseudo_palette[regno] = val;
	return 0;
}

static int lcd_init(void)
{
	/* 1. 分配一个fb_info */
	s3c_lcd = framebuffer_alloc(0, NULL);

	/* 2. 设置 */
	/* 2.1 设置固定的参数 */
	strcpy(s3c_lcd->fix.id, "tq2440_480_272_lcd");
	s3c_lcd->fix.smem_len = 480*272*16/8;
	s3c_lcd->fix.type     = FB_TYPE_PACKED_PIXELS;
	s3c_lcd->fix.visual   = FB_VISUAL_TRUECOLOR; /* TFT */
	s3c_lcd->fix.line_length = 480*2;
	
	/* 2.2 设置可变的参数 */
	s3c_lcd->var.xres           = 480;
	s3c_lcd->var.yres           = 272;
	s3c_lcd->var.xres_virtual   = 480;
	s3c_lcd->var.yres_virtual   = 272;
	s3c_lcd->var.bits_per_pixel = 16;

	/* RGB:565 */
	s3c_lcd->var.red.offset     = 11;
	s3c_lcd->var.red.length     = 5;
	
	s3c_lcd->var.green.offset   = 5;
	s3c_lcd->var.green.length   = 6;

	s3c_lcd->var.blue.offset    = 0;
	s3c_lcd->var.blue.length    = 5;

	s3c_lcd->var.activate       = FB_ACTIVATE_NOW;
	
	
	/* 2.3 设置操做函数 */
	s3c_lcd->fbops              = &s3c_lcdfb_ops;
	
	/* 2.4 其余的设置 */
	s3c_lcd->pseudo_palette = pseudo_palette;
	/*s3c_lcd->screen_base  = ;  后面再设置显存的虚拟地址 */ 
	s3c_lcd->screen_size   = 480*272*16/8;

	/* 3. 硬件相关的操做 */
	/* 3.1 配置GPIO用于LCD */

	gpccon = ioremap(0x56000020, 4);
	gpdcon = ioremap(0x56000030, 4);
	gpgcon = ioremap(0x56000060, 4);

    	*gpccon  = 0xaaaaaaaa;   /* GPIO管脚用于VD[7:0],LCDVF[2:0],VM,VFRAME,VLINE,VCLK,LEND */
	*gpdcon  = 0xaaaaaaaa;   /* GPIO管脚用于VD[23:8] */

	*gpgcon |= (3<<8); /* GPG4用做LCD_PWREN */
	
	/* 3.2 根据LCD手册设置LCD控制器, 好比VCLK的频率等 */
	lcd_regs = ioremap(0x4D000000, sizeof(struct lcd_regs));

	/* bit[17:8]: VCLK = HCLK / [(CLKVAL+1) x 2], LCD手册
	 *            10MHz(100ns) = 100MHz / [(CLKVAL+1) x 2]
	 *            CLKVAL = 4
	 * bit[6:5]: 0b11, TFT LCD
	 * bit[4:1]: 0b1100, 16 bpp for TFT
	 * bit[0]  : 0 = Disable the video output and the LCD control signal.
	 */
	lcd_regs->lcdcon1  = (4<<8) | (3<<5) | (0x0c<<1);

	/* 垂直方向的时间参数
	 * bit[31:24]: VBPD, VSYNC以后再过多长时间才能发出第1行数据
	 *             LCD手册 VBPD=2
	 * bit[23:14]: 多少行, 272, 因此LINEVAL=272-1=271
	 * bit[13:6] : VFPD, 发出最后一行数据以后,再过多长时间才发出VSYNC
	 *             LCD手册 VFPD=2
	 * bit[5:0]  : VSPW, VSYNC信号的脉冲宽度, LCD手册T1=1, 因此VSPW=1-1=0
	 */
	lcd_regs->lcdcon2  = (2<<24) | (271<<14) | (2<<6) | (10<<0);

	/* 水平方向的时间参数
	 * bit[25:19]: HBPD, VSYNC以后再过多长时间才能发出第1行数据
	 *             LCD手册 HBPD=2
	 * bit[18:8]: 多少列, 480, 因此HOZVAL=480-1=479
	 * bit[7:0] : HFPD, 发出最后一行里最后一个象素数据以后,再过多长时间才发出HSYNC
	 *             LCD手册 HFPD=2
	 */
	lcd_regs->lcdcon3 = (2<<19) | (479<<8) | (2);

	/* 水平方向的同步信号
	 * bit[7:0]	: HSPW, HSYNC信号的脉冲宽度, LCD手册 HSPW=41 
	 */	
	lcd_regs->lcdcon4 = (41<<0);

	/* 信号的极性 
	 * bit[11]: 1 = 565 format
	 * bit[10]: 0 = The video data is fetched at VCLK falling edge
	 * bit[9] : 1 = HSYNC信号要反转,即低电平有效 
	 * bit[8] : 1 = VSYNC信号要反转,即低电平有效 
	 * bit[6] : 0 = VDEN不用反转
	 * bit[3] : 0 = PWREN输出0
	 * bit[1] : 0 = BSWP
	 * bit[0] : 1 = HWSWP 2440手册P413
	 */
	lcd_regs->lcdcon5 = (1<<11) | (0<<10) | (1<<9) | (1<<8) | (1<<0);
	
	/* 3.3 分配显存(framebuffer), 并把地址告诉LCD控制器 */
	s3c_lcd->screen_base = dma_alloc_writecombine(NULL, s3c_lcd->fix.smem_len, &s3c_lcd->fix.smem_start, GFP_KERNEL);
	
	lcd_regs->lcdsaddr1  = (s3c_lcd->fix.smem_start >> 1) & ~(3<<30);
	lcd_regs->lcdsaddr2  = ((s3c_lcd->fix.smem_start + s3c_lcd->fix.smem_len) >> 1) & 0x1fffff;
	lcd_regs->lcdsaddr3  = (480*16/16);  /* 一行的长度(单位: 2字节) */	
	
	//s3c_lcd->fix.smem_start = xxx;  /* 显存的物理地址 */
	/* 启动LCD */
	lcd_regs->lcdcon1 |= (1<<0); /* 使能LCD控制器 */
	lcd_regs->lcdcon5 |= (1<<3); /* 使能LCD自己 */	

	/* 4. 注册 */
	register_framebuffer(s3c_lcd);
	
	return 0;
}

static void lcd_exit(void)
{
	unregister_framebuffer(s3c_lcd);
	lcd_regs->lcdcon1 &= ~(1<<0); /* 关闭LCD自己 */
	dma_free_writecombine(NULL, s3c_lcd->fix.smem_len, s3c_lcd->screen_base, s3c_lcd->fix.smem_start);
	iounmap(lcd_regs);
	iounmap(gpccon);
	iounmap(gpdcon);
	iounmap(gpgcon);
	framebuffer_release(s3c_lcd);
}

module_init(lcd_init);
module_exit(lcd_exit);

MODULE_LICENSE("GPL");


3.使用



MAKEFILE: 驱动文件名为sk_lcd.c

KERN_DIR = /home/stevenking/workspace/code/linux-2.6.39
#红色部分修改成本身的内核路径
all:
make -C $(KERN_DIR) M=`pwd` modules 

clean:
make -C $(KERN_DIR) M=`pwd` modules clean
rm -rf modules.order

obj-m += sk_lcd.o


1.首先先从原先内核中make menuconfig去掉原来的驱动程序,否则会有冲突

-> Device Drivers
-> Graphics support
<M> S3C2410 LCD framebuffer support


2.编译内核,下载新的内核

make zImage
make modules 

3.重建根文件系统

将linux文件夹下/driver/video/下面的
cfbfillrect.ko 
cfbimgblt.ko
cfbcopyarea.ko 
以及新编译的 
sk_lcd.ko
放入/root/lib/文件夹下
从新 mkyaffs2image root root.bin,下载新的文件系统

4.启动以后:

cd /lib
insmod cfbcopyarea.ko
insmod cfbfillrect.ko 
insmod cfbimgblt.ko 
insmod sk_lcd.ko
echo hello > /dev/tty1
cat /proc/devices > /dev/tty1
就能在LCD上看到输出的文字了

补充:添加到内核
1.driver/video/kconfig

config FB_TQ2440_LCD_SK
tristate "TQ2440 LCD framebuffer support by Steven King"
depends on FB && ARCH_S3C2410
select FB_CFB_FILLRECT
select FB_CFB_COPYAREA
select FB_CFB_IMAGEBLIT
---help---
 LCD driver by steven king 8/18/2013.

2.makefile

obj-$(CONFIG_FB_TQ2440_LCD_SK)  += tq2440_lcd_sk.o

3.文件复制过去,加上选项,编译,便可,比原来移植2410的驱动快了不少。