TensorFlow技术内幕(十四):在线学习

本文准备介绍tensorflow对在线学习的支持。所谓在线学习也就是模型一边训练一边服务,与之相对的则是离线学习(或称为批量学习): 在工程实现上,一般采用架构如下: 通过周期性的模型同步,将训练集群和服务集群相互隔离,这样做是有必要的,因为两个集群的业务场景不一样,对他们的要求也不一样: 模型服务集群承载着线上的真实流量,所以所有后端服务的常用指标都适用于服务模型服务集群,高可用性、高效率、高扩
相关文章
相关标签/搜索