原文出处:http://zhuanlan.zhihu.com/wille/19759362函数
我保证这篇文章和你之前看过的全部文章都不一样,这是 2012 年还在果壳的时候写的,可是当时没有来得及写完就出国了……因而拖了两年,嗯,我是拖延症患者……工具
这篇文章的核心思想就是:学习
要让读者在不看任何数学公式的状况下理解傅里叶分析。orm
傅里叶分析不只仅是一个数学工具,更是一种能够完全颠覆一我的之前世界观的思惟模式。但不幸的是,傅里叶分析的公式看起来太复杂了,因此不少大一新生上来就懵圈并今后对它深恶痛绝。老实说,这么有意思的东西竟然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)因此我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。因此,无论读到这里的您从事何种工做,我保证您都能看懂,而且必定将体会到经过傅里叶分析看到世界另外一个样子时的快感。至于对于已经有必定基础的朋友,也但愿不要看到会的地方就急忙日后翻,仔细读必定会有新的发现。blog
————以上是定场诗————游戏
下面进入正题:ip
抱歉,仍是要啰嗦一句:其实学习原本就不是易事,我写这篇文章的初衷也是但愿你们学习起来更加轻松,充满乐趣。可是千万!千万不要把这篇文章收藏起来,或是存下地址,内心想着:之后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。不管如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多……ci
1、嘛叫频域get
从咱们出生,咱们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间做为参照来观察动态世界的方法咱们称其为时域分析。而咱们也想固然的认为,世间万物都在随着时间不停的改变,而且永远不会静止下来。但若是我告诉你,用另外一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会以为我疯了?我没有疯,这个静止的世界就叫作频域。animation
先举一个公式上并不是很恰当,但意义上再贴切不过的例子:
在你的理解中,一段音乐是什么呢?
这是咱们对音乐最广泛的理解,一个随着时间变化的震动。但我相信对于乐器小能手们来讲,音乐更直观的理解是这样的:
好的!下课,同窗们再见。
是的,其实这一段写到这里已经能够结束了。上图是音乐在时域的样子,而下图则是音乐在频域的样子。因此频域这一律念对你们都从不陌生,只是历来没意识到而已。
如今咱们能够回过头来从新看看一开始那句痴人说梦般的话:世界是永恒的。
将以上两图简化:
时域:
频域:
在时域,咱们观察到钢琴的琴弦一会上一会下的摆动,就如同一支股票的走势;而在频域,只有那一个永恒的音符。
所(前方高能!~~~~~~~~~~~非战斗人员退散~~~~~~~)
以(~~~~~~~~~~~~~~~前方高能预警~~~~~~~~~~~~~~前方高能~~~~~~~~)
你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章。
(众人:鸡汤滚出知乎!)
抱歉,这不是一句鸡汤文,而是黑板上确凿的公式:傅里叶同窗告诉咱们,任何周期函数,均可以看做是不一样振幅,不一样相位正弦波的叠加。在第一个例子里咱们能够理解为,利用对不一样琴键不一样力度,不一样时间点的敲击,能够组合出任何一首乐曲。
而贯穿时域与频域的方法之一,就是传中说的傅里叶分析。傅里叶分析可分为傅里叶级数(Fourier Serie)和傅里叶变换(Fourier Transformation),咱们从简单的开始谈起。
2、傅里叶级数(Fourier Series)
仍是举个栗子而且有图有真相才好理解。
若是我说我能用前面说的正弦曲线波叠加出一个带 90 度角的矩形波来,你会相信吗?你不会,就像当年的我同样。可是看看下图:
第一幅图是一个郁闷的正弦波 cos(x)
第二幅图是 2 个卖萌的正弦波的叠加 cos (x) +a.cos (3x)
第三幅图是 4 个发春的正弦波的叠加
第四幅图是 10 个便秘的正弦波的叠加
随着正弦波数量逐渐的增加,他们最终会叠加成一个标准的矩形,你们从中体会到了什么道理?
(只要努力,弯的都能掰直!)
随着叠加的递增,全部正弦波中上升的部分逐渐让本来缓慢增长的曲线不断变陡,而全部正弦波中降低的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了。可是要多少个正弦波叠加起来才能造成一个标准 90 度角的矩形波呢?不幸的告诉你们,答案是无穷多个。(上帝:我能让大家猜着我?)
不只仅是矩形,你能想到的任何波形都是能够如此方法用正弦波叠加起来的。这是没有接触过傅里叶分析的人在直觉上的第一个难点,可是一旦接受了这样的设定,游戏就开始有意思起来了。
仍是上图的正弦波累加成矩形波,咱们换一个角度来看看:
在这几幅图中,最前面黑色的线就是全部正弦波叠加而成的总和,也就是愈来愈接近矩形波的那个图形。然后面依不一样颜色排列而成的正弦波就是组合为矩形波的各个份量。这些正弦波按照频率从低到高从前向后排列开来,而每个波的振幅都是不一样的。必定有细心的读者发现了,每两个正弦波之间都还有一条直线,那并非分割线,而是振幅为 0 的正弦波!也就是说,为了组成特殊的曲线,有些正弦波成分是不须要的。
这里,不一样频率的正弦波咱们成为频率份量。
好了,关键的地方来了!!
若是咱们把第一个频率最低的频率份量看做“1”,咱们就有了构建频域的最基本单元。
对于咱们最多见的有理数轴,数字“1”就是有理数轴的基本单元。
(好吧,数学称法为——基。在那个年代,这个字尚未其余奇怪的解释,后面还有正交基这样的词汇我会说吗?)
时域的基本单元就是“1 秒”,若是咱们将一个角频率为的正弦波 cos(
t)看做基础,那么频域的基本单元就是
。
有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢?cos(0t)就是一个周期无限长的正弦波,也就是一条直线!因此在频域,0 频率也被称为直流份量,在傅里叶级数的叠加中,它仅仅影响所有波形相对于数轴总体向上或是向下而不改变波的形状。
接下来,让咱们回到初中,回忆一下已经死去的八戒,啊不,已经死去的老师是怎么定义正弦波的吧。
正弦波就是一个圆周运动在一条直线上的投影。因此频域的基本单元也能够理解为一个始终在旋转的圆
想看动图的同窗请戳这里:
File:Fourier series square wave circles animation.gif
以及这里:
File:Fourier series sawtooth wave circles animation.gif
点出去的朋友不要被 wiki 拐跑了,wiki 写的哪有这里的文章这么没节操是否是。
介绍完了频域的基本组成单元,咱们就能够看一看一个矩形波,在频域里的另外一个模样了:
这是什么奇怪的东西?
这就是矩形波在频域的样子,是否是彻底认不出来了?教科书通常就给到这里而后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱,就是——
再清楚一点:
能够发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为 0 的正弦波。
动图请戳:
File:Fourier series and transform.gif
老实说,在我学傅里叶变换时,维基的这个图尚未出现,那时我就想到了这种表达方法,并且,后面还会加入维基没有表示出来的另外一个谱——相位谱。
可是在讲相位谱以前,咱们先回顾一下刚刚的这个例子究竟意味着什么。记得前面说过的那句“世界是静止的”吗?估计好多人对这句话都已经吐槽半天了。想象一下,世界上每个看似混乱的表象,实际都是一条时间轴上不规则的曲线,但实际这些曲线都是由这些无穷无尽的正弦波组成。咱们看似不规律的事情反而是规律的正弦波在时域上的投影,而正弦波又是一个旋转的圆在直线上的投影。那么你的脑海中会产生一个什么画面呢?
咱们眼中的世界就像皮影戏的大幕布,幕布的后面有无数的齿轮,大齿轮带动小齿轮,小齿轮再带动更小的。在最外面的小齿轮上有一个小人——那就是咱们本身。咱们只看到这个小人毫无规律的在幕布前表演,却没法预测他下一步会去哪。而幕布后面的齿轮却永远一直那样不停的旋转,永不停歇。这样说来有些宿命论的感受。说实话,这种对人生的描绘是我一个朋友在咱们都是高中生的时候感叹的,当时想一想似懂非懂,直到有一天我学到了傅里叶级数……
抱歉,仍是没写完。可是我想坚持看到这里的人已经很不容易了。咱们都休息一下,下一讲再继续……