Redission分布式锁源码解析

Redission锁继承Implements Reentrant Lock,因此具有 Reentrant Lock 锁中的一些特性:超时,重试,可中断等。加上Redission中Redis具有分布式的特性,因此很是适合用来作Java中的分布式锁。 下面咱们对其加锁、解锁过程当中的源码细节进行一一分析。redis

锁的接口定义了一下方法:分布式

分布式锁当中加锁,咱们经常使用的加锁接口:ide

boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException;

下面咱们来看一下方法的具体实现:ui

public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {
        long time = unit.toMillis(waitTime);
        long current = System.currentTimeMillis();
        final long threadId = Thread.currentThread().getId();
        Long ttl = tryAcquire(leaseTime, unit, threadId);
        // lock acquired
        if (ttl == null) {
            return true;
        }
        
        time -= (System.currentTimeMillis() - current);
        if (time <= 0) {
            acquireFailed(threadId);
            return false;
        }
        
        current = System.currentTimeMillis();
        final RFuture<RedissonLockEntry> subscribeFuture = subscribe(threadId);
        if (!await(subscribeFuture, time, TimeUnit.MILLISECONDS)) {
            if (!subscribeFuture.cancel(false)) {
                subscribeFuture.addListener(new FutureListener<RedissonLockEntry>() {
                    @Override
                    public void operationComplete(Future<RedissonLockEntry> future) throws Exception {
                        if (subscribeFuture.isSuccess()) {
                            unsubscribe(subscribeFuture, threadId);
                        }
                    }
                });
            }
            acquireFailed(threadId);
            return false;
        }

        try {
            time -= (System.currentTimeMillis() - current);
            if (time <= 0) {
                acquireFailed(threadId);
                return false;
            }
        
            while (true) {
                long currentTime = System.currentTimeMillis();
                ttl = tryAcquire(leaseTime, unit, threadId);
                // lock acquired
                if (ttl == null) {
                    return true;
                }

                time -= (System.currentTimeMillis() - currentTime);
                if (time <= 0) {
                    acquireFailed(threadId);
                    return false;
                }

                // waiting for message
                currentTime = System.currentTimeMillis();
                if (ttl >= 0 && ttl < time) {
                    getEntry(threadId).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
                } else {
                    getEntry(threadId).getLatch().tryAcquire(time, TimeUnit.MILLISECONDS);
                }

                time -= (System.currentTimeMillis() - currentTime);
                if (time <= 0) {
                    acquireFailed(threadId);
                    return false;
                }
            }
        } finally {
            unsubscribe(subscribeFuture, threadId);
        }
//        return get(tryLockAsync(waitTime, leaseTime, unit));
    }

首先咱们看到调用tryAcquire尝试获取锁,在这里是否能获取到锁,是根据锁名称的过时时间TTL来断定的(TTL<=0:则说明该锁不存在或者已经超时,此时获取锁成功。TTL>0:则说明该锁被其余现成持有,此时获取锁失败);线程

下面咱们接着看一下tryAcquire的实现:blog

private Long tryAcquire(long leaseTime, TimeUnit unit, long threadId) {
    return get(tryAcquireAsync(leaseTime, unit, threadId));
}

能够看到真正获取锁的操做通过一层get操做里面执行的,这里为什么要这么操做,本人也不是太理解,若有理解错误,欢迎指正。继承

get 是由CommandAsyncExecutor(一个线程Executor)封装的一个Executor

设置一个单线程的同步控制器CountDownLatch,用于控制单个线程的中断信息。我的理解通过中间的这么一步:主要是为了支持线程可中断操做。接口

public <V> V get(RFuture<V> future) {
    if (!future.isDone()) {
        final CountDownLatch l = new CountDownLatch(1);
        future.addListener(new FutureListener<V>() {
            @Override
            public void operationComplete(Future<V> future) throws Exception {
                l.countDown();
            }
        });
        
        boolean interrupted = false;
        while (!future.isDone()) {
            try {
                l.await();
            } catch (InterruptedException e) {
                interrupted = true;
            }
        }
        
        if (interrupted) {
            Thread.currentThread().interrupt();
        }
    }

    // commented out due to blocking issues up to 200 ms per minute for each thread:因为每一个线程的阻塞问题,每分钟高达200毫秒
    // future.awaitUninterruptibly();
    if (future.isSuccess()) {
        return future.getNow();
    }

    throw convertException(future);
}

 

咱们进一步往下看:get

private <T> RFuture<Long> tryAcquireAsync(long leaseTime, TimeUnit unit, final long threadId) {
    if (leaseTime != -1) {
        return tryLockInnerAsync(leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
    }
    RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(), TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
    ttlRemainingFuture.addListener(new FutureListener<Long>() {
        @Override
        public void operationComplete(Future<Long> future) throws Exception {
            if (!future.isSuccess()) {
                return;
            }

            Long ttlRemaining = future.getNow();
            // lock acquired
            if (ttlRemaining == null) {
                scheduleExpirationRenewal(threadId);
            }
        }
    });
    return ttlRemainingFuture;
}

首先判断锁是否有超时时间,有过时时间的话,会在后面获取锁的时候设置进去。没有过时时间的话,则会用默认的同步

private long lockWatchdogTimeout = 30 * 1000;

下面咱们在进一步往下分析真正获取锁的操做:

<T> RFuture<T> tryLockInnerAsync(long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) {
    internalLockLeaseTime = unit.toMillis(leaseTime);

    return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command,
              "if (redis.call('exists', KEYS[1]) == 0) then " +
                  "redis.call('hset', KEYS[1], ARGV[2], 1); " +
                  "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                  "return nil; " +
              "end; " +
              "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
                  "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
                  "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                  "return nil; " +
              "end; " +
              "return redis.call('pttl', KEYS[1]);",
                Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId));
}

我把里面的重点信息作了如下三点总结:

1:真正执行的是一段具备原子性的Lua脚本,而且最终也是由CommandAsynExecutor去执行。

2:锁真正持久化到Redis时,用的hash类型key field value

3:获取锁的三个参数:getName()是逻辑锁名称,例如:分布式锁要锁住的methodName+params;internalLockLeaseTime是毫秒单位的锁过时时间;getLockName则是锁对应的线程级别的名称,由于支持相同线程可重入,不一样线程不可重入,因此这里的锁的生成方式是:UUID+":"threadId。有的同窗可能会问,这样不是很缜密:不一样的JVM可能会生成相同的threadId,因此Redission这里加了一个区分度很高的UUID;

Lua脚本中的执行分为如下三步:

1:exists检查redis中是否存在锁名称;若是不存在,则获取成功;同时把逻辑锁名称KEYS[1],线程级别的锁名称[ARGV[2],value=1,设置到redis。并设置逻辑锁名称的过时时间ARGV[2],返回;

2:若是检查到存在KEYS[1],[ARGV[2],则说明获取成功,此时会自增对应的value值,记录重入次数;并更新锁的过时时间

3:key不存,直接返回key的剩余过时时间(-2)

锁获取失败、解锁过程后在后面的文章继续补充

相关文章
相关标签/搜索