本文介绍了使用animation和pyplot模块实现实时数据流可视化的方法
鉴于网上这方面资料不多,作一记录供你们学习python
先说一下本身的需求:为辣鸡项目所迫,有一硬件产生实时数据流,须要采集并动态展现数据变化规律,帧数在20-50帧数组
开始我是不知道有animation这个神器的,就用set_xdata/set_ydata更新数据,pause刷新图像app
pltx = np.arange(0, 400, 10) plty = [0 for length in range(0, 40)] plt.ion() fig = plt.figure() ax = fig.add_subplot(111) line, = ax .plot(pltx, plty) def update() line.set_ydata(plty) plt.pause(0.001)
功能是实现了,但没想到效率极其坑爹,8组数据+20帧的配置就拽不动了,有明显的滞后。鬼知道它这个pause是怎么实现的。。
下面是正解:dom
看一下官方API文档的参数解释:ide
FuncAnimation(fig, func, frames=None, init_func=None, fargs=None, save_count=None, **kwargs)函数
fig : matplotlib.figure.Figure
The figure object that is used to get draw, resize, and any other needed events.性能
func : callable
The function to call at each frame. The first argument will be the next value in frames. Any additional positional arguments can be supplied via the fargs parameter.学习
frames : iterable, int, generator function, or None, optional
Source of data to pass func and each frame of the animation
If an iterable, then simply use the values provided. If the iterable has a length, it will override the save_count kwarg.
If an integer, then equivalent to passing range(frames)
If None, then equivalent to passing itertools.count.
In all of these cases, the values in frames is simply passed through to the user-supplied func and thus can be of any type.动画
init_func : callable, optional
A function used to draw a clear frame. If not given, the results of drawing from the first item in the frames sequence will be used. This function will be called once before the first frame.
If blit == True, init_func must return an iterable of artists to be re-drawn.
The required signature is:
def init_func() -> iterable_of_artists:ui
fargs : tuple or None, optional
Additional arguments to pass to each call to func.
save_count : int, optional
The number of values from frames to cache.
interval : number, optional
Delay between frames in milliseconds. Defaults to 200.
repeat_delay : number, optional
If the animation in repeated, adds a delay in milliseconds before repeating the animation. Defaults to None.
repeat : bool, optional
Controls whether the animation should repeat when the sequence of frames is completed. Defaults to True.
blit : bool, optional
Controls whether blitting is used to optimize drawing. Defaults to False.
官方例子,贝叶斯函数动画:
import math import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation def beta_pdf(x, a, b): return (x**(a-1) * (1-x)**(b-1) * math.gamma(a + b) / (math.gamma(a) * math.gamma(b))) class UpdateDist(object): def __init__(self, ax, prob=0.5): self.success = 0 self.prob = prob self.line, = ax.plot([], [], 'k-') self.x = np.linspace(0, 1, 200) self.ax = ax # Set up plot parameters self.ax.set_xlim(0, 1) self.ax.set_ylim(0, 15) self.ax.grid(True) # This vertical line represents the theoretical value, to # which the plotted distribution should converge. self.ax.axvline(prob, linestyle='--', color='black') def init(self): self.success = 0 self.line.set_data([], []) return self.line, def __call__(self, i): # This way the plot can continuously run and we just keep # watching new realizations of the process if i == 0: return self.init() # Choose success based on exceed a threshold with a uniform pick if np.random.rand(1,) < self.prob: self.success += 1 y = beta_pdf(self.x, self.success + 1, (i - self.success) + 1) self.line.set_data(self.x, y) return self.line, # Fixing random state for reproducibility np.random.seed(19680801) fig, ax = plt.subplots() ud = UpdateDist(ax, prob=0.7) anim = FuncAnimation(fig, ud, frames=np.arange(100), init_func=ud.init, interval=5, blit=True) plt.show()
效果如图:
个人程序须要在每次新数据包发来时更新图像,但更新数据的时间是不可预知的
关键代码:
def update(frame): if (frame == 0): return line1 del plty[0] plty.append((outputData[listPos - 1][3])) return line def gen_function(): global listPos lastPos = 0 while (1): if (lastPos != listPos): lastPos = listPos yield 1 else: yield 0 if (__name__ == "__main__"): pyplotInit() ani = animation.FuncAnimation(fig, update, frames=gen_function, interval=30, blit=True) plt.show()