排序算法入门之「选择排序」

选择排序

选择排序也是利用了“挡板法”这个经典思想。java

挡板左边是已排序区间,右边是未排序区间,那么每次的“选择”是去找右边未排序区间的最小值,找到以后和挡板后面的第一个值换一下,而后再把挡板往右移动一位,保证排好序的这些元素在挡板的左边。git

好比以前的例子:{5, 2, 0, 1}github

咱们用一个挡板来分隔数组是否排好序,
用指针 j 来寻找未排序区间的最小值;算法

第一轮 j 最初指向 5,而后遍历整个未排序区间,最终指向 0,那么 0 就和挡板后的第一个元素换一下,也就是和 5 交换一下位置,挡板向右移动一位,结束第一轮。api

第二轮,j 从挡板后的2开始遍历,最终指向1,而后1和挡板后的第一个元素 2 换一下,挡板向右移动一位,结束第二轮。数组

第三轮,j 从2开始遍历,最终指向2,而后和2本身换一下,挡板向右移动一位,结束第三轮。学习

还剩一个元素,不用遍历了,就结束了。优化

选择排序与以前的插入排序对比来看,要注意两点:spa

  1. 挡板必须从 0 开始,而不能从 1 开始。虽然在这两种算法中,挡板的物理意义都是分隔已排序和未排序区间,可是它们的已排序区间里放的元素的意义不一样:
  • 选择排序是只能把当前的最小值放进来,而不能放其余的;
  • 插入排序的第一个元素能够为任意值。

因此选择排序的挡板左边最开始不能有任何元素。指针

  1. 在外层循环时,
  • 选择排序的最后一轮能够省略,由于只剩下最大的那个元素了;
  • 插入排序的最后一轮不可省略,由于它的位置还没定呢。
class Solution {
 public void selectionSort(int[] input) {
  if(input == null || input.length <= 1) {
   return;
  } 
  for(int i = 0; i < input.length - 1; i++) {
   int minValueIndex = i;
   for(int j = i + 1; j < input.length; j++) {
    if(input[j] < input[minValueIndex]) {
     minValueIndex = j;
    }
   }
   swap(input, minValueIndex, i);
  }
 }
 private void swap(int[] input, int x, int y) {
  int tmp = input[x];
  input[x] = input[y];
  input[y] = tmp;
 }
}

时间复杂度

最内层的 if 语句每执行一次是 O(1) ,那么要执行多少次呢?

  • 当 i = 0 时,是 n-1 次;
  • 当 i = 1 时,是 n-2 次;
  • ...
  • 最后是 1 次;

因此加起来,总共是:
(n-1) + (n-2) + … + 1 = n*(n-1) / 2 = O(n^2)

是这样算出来的,而不是一拍脑壳说两层循环就是 O(n^2).

空间复杂度

这个很简单,最多的状况是 call swap() 的时候,而后 call stack 上每一层就用了几个有限的变量,因此是 O(1)。

那天然也是原地排序算法了。

稳定性

这个答案是否认的,选择排序并无稳定性。

由于交换的过程破坏了原有的相对顺序,好比: {5, 5, 2, 1, 0} 这个例子,第一次交换是 0 和 第一个 5 交换,因而第一个 5 跑到了数组的最后一位,且再也无翻身之地,因此第一个 5 第二个 5 的相对顺序就已经打乱了。

这个问题在石头哥的那篇谷歌面经文章里有被考到哦,若是尚未看过这篇面经文章的,在公众号里回复「谷歌」二字,就能够看到了。

优化

选择排序的其中一步是选出每一轮的最小值,那么这一步若是使用 heapify() 来优化,就能够从 O(n) 优化到 O(logn),这其实就变成了 heapSort.

若是你喜欢这篇文章,记得给我点赞留言哦~大家的支持和承认,就是我创做的最大动力,咱们下篇文章见!

我是小齐,纽约程序媛,终生学习者,天天晚上 9 点,云自习室里不见不散!

更多干货文章见个人 Github: https://github.com/xiaoqi6666...

本站公众号
   欢迎关注本站公众号,获取更多信息