JavaShuo
栏目
标签
(EmotiW2016)Video-based emotion recognition using CNNRNN and C3D hybrid networks
时间 2021-01-11
标签
深度学习
论文
EmotiW
栏目
C&C++
繁體版
原文
原文链接
Introduction 本文主要利用了RNN和C3D解决视频分类问题,其中RNN将CNN从每个视频帧中提取出来的特征进行时序上的编码,C3D对人脸表征和运动信息同时建模,最后再融合音频特征,完成视频分类。本文以59.02%的正确率较EmotiW 2015 53.8%的正确率高出许多。 Model 整体模型如图1,该模型主要由三个子模型组成:CNN-RNN,C3D和
>>阅读原文<<
相关文章
1.
EmotiW2016第一论文Video-based emotion recognition using CNNRNN and C3D hybrid networks
2.
深度学习文章阅读3--Video-based emotion recognition using CNNRNN and C3D hybrid networks
3.
Emotion Recognition Using Graph Convolutional Networks
4.
论文阅读-----DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Networks
5.
2018 Interspeech On Enhancing Speech Emotion Recognition using Generative Adversarial Networks
6.
SemEval2019Task3_ERC | (6) Hybrid Features for Emotion Recognition in Textual Conversation
7.
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
8.
【OverFeat】《OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks》
9.
Multimodal Gesture Recognition Using 3-D Convolution and Convolutional LSTM
10.
Recurrent Neural Networks for Emotion Recognition in Video
更多相关文章...
•
W3C RDF and OWL 活动
-
W3C 教程
•
XSL-FO table-and-caption 对象
-
XSL-FO 教程
•
RxJava操作符(七)Conditional and Boolean
•
RxJava操作符(六)Utility
相关标签/搜索
networks
recognition
c3d
emotion
using
hybrid
action.....and
between...and
using&n
platform..using
Hybrid
C&C++
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
FM理论与实践
2.
Google开发者大会,你想知道的都在这里
3.
IRIG-B码对时理解
4.
干货:嵌入式系统设计开发大全!(万字总结)
5.
从域名到网站—虚机篇
6.
php学习5
7.
关于ANR线程阻塞那些坑
8.
android studio databinding和include使用控件id获取报错 不影响项目正常运行
9.
我女朋友都会的安卓逆向(四 动态调试smali)
10.
io存取速度
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
EmotiW2016第一论文Video-based emotion recognition using CNNRNN and C3D hybrid networks
2.
深度学习文章阅读3--Video-based emotion recognition using CNNRNN and C3D hybrid networks
3.
Emotion Recognition Using Graph Convolutional Networks
4.
论文阅读-----DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Networks
5.
2018 Interspeech On Enhancing Speech Emotion Recognition using Generative Adversarial Networks
6.
SemEval2019Task3_ERC | (6) Hybrid Features for Emotion Recognition in Textual Conversation
7.
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
8.
【OverFeat】《OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks》
9.
Multimodal Gesture Recognition Using 3-D Convolution and Convolutional LSTM
10.
Recurrent Neural Networks for Emotion Recognition in Video
>>更多相关文章<<