过拟合解决方法总结(不断更新)

    因为解决过拟合的方法很多,有些方法每次用到的时候都需要百度,因此发个文,将以后用到的缓解过拟合方法总结在这里。(不断更新) 1.交叉验证 参考地址 将原始数据分成K组(一般是均分),将每个子集数据分别做一次验证集,其余的K-1组子集数据作为训练集,这样会得到K个模型,用这K个模型最终的验证集的分类准确率的平均数作为此K-CV下分类器的性能指标。K一般大于等于2,实际操作时一般从3开始取,只
相关文章
相关标签/搜索