大概就是给你一个间隔为1的多米诺序列,推倒一个多米诺骨牌有个花费,求推倒全部多米诺骨牌的最小花费spa
这道题先处理出每个点最左及最右可推倒的位置,这能够用栈维护
设以上位置为\(l_{i}\),\(r_{i}\)
接下来设\(f_{i}\)为第1~i个点所有倒下,且第i个点往左倒的最小花费
\(g_{i}\)为第1~i个点所有倒下,且第i个点往右倒的最小花费
先考虑\(f_{i}\)
显然,\(f_{i}=min(f_{l_{i}-1},g_{l_{i}-1})+cost_{i}\)
即第\(l_{i}-1\)以前的点都倒下再加上\(l_{i}\)到i倒下的花费
再考虑\(g_{i}\)
对于\(g_{i}\),初始确定是手动放倒该点即$$g_{i}=min(g_{i-1},f_{i-1})+cost_{i}$$
用一个栈维护最小的能推倒i的\(g_{j}\)来更新\(g_{i}\)
由于j能影响i,那么i能影响的j都能影响,因此只有\(g_{i}<g_{j}\)时才须要将该点压入栈中code
#include <cstdio> #include <algorithm> #define M 10000001 #define N 250010 #define open(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout); using namespace std; int n,m,i,q,id,mul,t,j,cnt,zhan[M],left[M],right[M],k[N],a[N],b[N],h[M],pl[N]; long long f[M],g[M],c[M]; int main() { open("shark"); scanf("%d%d",&n,&m); for (i=1;i<=n;i++) { scanf("%d",&k[i]); pl[i]=cnt+1; for (j=1;j<=k[i];j++) scanf("%d",&a[++cnt]); cnt=pl[i]-1; for (j=1;j<=k[i];j++) scanf("%d",&b[++cnt]); } pl[n+1]=cnt+1; scanf("%d",&q); for (i=1;i<=q;i++) { scanf("%d %d",&id,&mul); for (j=pl[id];j<=pl[id+1]-1;j++) { h[++t]=a[j]; c[t]=(long long)b[j]*mul; } }zhan[1]=zhan[0]=1; for (i=1;i<=m;i++) { left[i]=max(1,i-h[i]+1); t=left[i]; while (left[i]<=zhan[zhan[0]]) { if (!zhan[0]) break; t=min(t,left[zhan[zhan[0]]]); zhan[0]--; } left[i]=t; zhan[++zhan[0]]=i; } zhan[1]=m;zhan[0]=1; for (i=m;i>=1;i--) { right[i]=min(m,i+h[i]-1); t=right[i]; while (right[i]>=zhan[zhan[0]]) { if (!zhan[0]) break; t=max(t,right[zhan[zhan[0]]]); zhan[0]--; } right[i]=t; zhan[++zhan[0]]=i; } f[1]=g[1]=c[1]; zhan[0]=zhan[1]=1; for (i=2;i<=m;i++) { f[i]=min(f[left[i]-1],g[left[i]-1])+c[i]; while (right[zhan[zhan[0]]]<i && zhan[0]) zhan[0]--; g[i]=min(g[i-1],f[i-1])+c[i]; if (!zhan[0]) zhan[++zhan[0]]=i;else { g[i]=min(g[i],g[zhan[zhan[0]]]); if (g[i]<g[zhan[zhan[0]]]) zhan[++zhan[0]]=i; } } printf("%lld",min(g[m],f[m])); return 0; }