第4章 朴素贝叶斯法

朴素贝叶斯 (naive Bayes) 法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出Y。 4.1 朴素贝叶斯法的学习与分类 基本方法 朴素贝叶斯法通过训练数据集学习X和Y的联合概率分布 P(X,Y)。 训练数据集                    
相关文章
相关标签/搜索