from sklearn.datasets import load_sample_image from sklearn.cluster import KMeans import matplotlib.pyplot as plt china = load_sample_image("china.jpg") plt.imshow(china) plt.show()
读取一张示例图片或本身准备的图片,观察图片存放数据特色。ui
import matplotlib.image as img ge = img.imread('F:\\ge.jpg') plt.imshow(ge) plt.show()
plt.imshow(ge[:,:,0])
print(ge.shape)
ge
根据图片的分辨率,可适当下降分辨率spa
ges = ge[::3,::3] plt.imshow(ges) plt.show()
from sklearn.datasets import load_sample_image from sklearn.cluster import KMeans import matplotlib.pyplot as plt china = load_sample_image("china.jpg") plt.imshow(china) plt.show() image = china[::3, ::3] X = image.reshape(-1,3) print(china.shape,image.shape,X.shape) n_colors = 64 model = KMeans(n_colors) labels = model.fit_predict(X) colors = model.cluster_centers_
new_image=colors[labels]
new_image=new_image.reshape(image.shape)
plt.imshow(new_image.astype(np.uint8))
plt.show()
import sys
print(sys.getsizeof(china))
print(sys.getsizeof(new_image))
理解贝叶斯定理code