微分几何是现代数学领域中的重要分支,在理论探索和实际应用中都是重要学科。大名鼎鼎的高斯、欧拉是微分几何学派的建立者(是否记得多少公式和定理以这两人的名字命名)。20世纪是微分几何发展迅猛的100年,中国的数学家也作出太重要贡献,如陈省身、邱成桐(菲尔兹奖得主)。在计算机领域,微分几何是计算机图形学的基础,逼真酷炫的电脑游戏、电影特效等,都是在微分几何基础上的产业化。在机器人领域,核心控制系统须要合适的传感器(如相机)获取信息,并理解环境信息,属于计算机视觉的范畴;如需完成复杂动做,如抓取、放置等操做,则须要理解物体的几何信息,须要用几何特征描述来决策机器人要执行的动做。微信
完成机器人抓取须要以下两个过程:学习
识别过程,属于视觉和深度学习的范畴,在此再也不赘述。优化
获取物体的三维空间描述,微分几何。spa
三维空间中的物体有哪些特征呢?3d
为理解曲率,首先回到二维平面。什么是曲率?简答说来,是几何体的不平坦程度。平面曲线的曲率定义为其密切圆的倒数。采用微分的定义,密切圆在很小的范围内同曲线重合。故平面中的圆全部点曲率一直,为半径的倒数,密切圆为其自己。直线曲率到处为0,因其密切圆半径无穷大。blog
曲线的密切圆和密切圆半径。曲率为半径的倒数。游戏
三维空间中可用曲率描述曲面。包括两个主曲率、高斯曲率、平局曲率等。点的主曲率是经过此点曲线最大和最小曲率。高斯曲率为两个曲率之积,平均曲率则是两个主曲率之平均。ip
一些特殊状况,如负曲率,如马鞍型,常见使用:冷却塔,广州塔。ci
二次曲线也称圆锥曲线,其在数学上的定位为一个正圆锥面和一个平面的相切造成的曲线。其公式可表述为:深度学习
其中A,B,C不得皆等于0。故常见的圆、椭圆、抛物线等皆属于二次曲线。
二次曲面则是三维空间中最多见的曲面,其通常公式为:
常见的二次曲面包括:
双曲面(Hyperbolic),形如或
圆锥体(elliptic cone),形如:
一些特殊二次曲面示例:
在机器人抓取领域,通常采用深度相机做为传感器。深度相机可直接获取空间点云信息。对于特定物体的抓取,通常在检测定位的基础上,采用点云拟合的方式定位,从而获取物体在深度相机坐标系下的位置和姿态。经常使用的拟合有以下几种:
平面拟合。空间中的平面可由空间中一点和法向量惟一肯定。经常使用拟合方案有,主成分分析;最小二乘法;随机采样法(RANSAC)。
圆柱拟合。实际抓取场景中常常碰到圆柱面物体的状况。实际点云拟合中,若是已知主轴方向,则可投影到平面中,作圆的拟合。如方向未知,可首先用PCA的方法肯定主轴方向。
球体拟合,看似复杂,实际只需肯定圆心(一个点)和半径。总共4个自由度(未知变量),可以使用最小二乘法或数值最优化方法来肯定。
机器人抓取的实际场景中,通常曲面较为复杂,很难用简单公式表述。对于复杂曲面(曲线),通常采用ICP(IterativeClosestPoint)的方案完成自由形状的对齐。
总结
曲率是描述空间中的曲线或曲面最重要的特征。通常来讲,进行机器人抓取,须要首先利用图像信息肯定物体的图像位置,而后经过深度相机获取的点云信息技术其几何特性,完成抓取过程。曲面拟合和ICP的方案仍然有许多细节,在机器人抓取中须要特别注意。请关注后续文章。
原载杭州蓝芯科技微信公众号