脱壳的艺术

脱壳的艺术php

Mark Vincent Yasonhtml

概述:脱壳是门艺术——脱壳既是一种心理挑战,同时也是逆向领域最为激动人心的智力游戏之一。为了甄别或解决很是难的反逆向技巧,逆向分析人员有时不得不了解操做系统的一些底层知识,聪明和耐心也是成功脱壳的关键。这个挑战既牵涉到壳的建立者,也牵涉到那些决心躲过这些保护的脱壳者。react

本文主要目的是介绍壳经常使用的反逆向技术,同时也探讨了能够用来躲过或禁用这些保护的技术及公开可用的工具。这些信息将使研究人员特别是恶意代码分析人员在分析加壳的恶意代码时能识别出这些技术,当这些反逆向技术阻碍其成功分析时能决定下一步的动做。第二个目的,这里介绍的信息也会被那些计划在软件中添加一些保护措施用来减缓逆向分析人员分析其受保护代码的速度的研究人员用到。固然没有什么能使一个熟练的、消息灵通的、坚决的逆向分析人员止步的。算法

关键词:逆向工程、壳、保护、反调试、反逆向数组

1简介                                                                         sass

在逆向工程领域,壳是最有趣的谜题之一。在解谜的过程当中,逆向分析人员会得到许多关于系统底层、逆向技巧等知识。安全

壳(这个术语在本文中既指压缩壳也包括加密壳)是用来防止程序被分析的。它们被商业软件合法地用于防止信息披露、篡改及盗版。惋惜恶意软件也基于一样的理由在使用壳,只不过动机不良。网络

因为大量恶意软件存在加壳现象,研究人员和恶意代码分析人员为了分析代码,开始学习脱壳的技巧。可是随着时间的推移,为防止逆向分析人员分析受保护的程序并成功脱壳,新的反逆向技术也被不断地添加到壳中。而且战斗还在继续,新的反逆向技术被开发的同时逆向分析人员也在针锋相对地发掘技巧、研究技术并开发工具来对付它们。数据结构

本文主要关注于介绍壳所使用的反逆向技术,同时也探讨了躲过/禁用这些保护措施的工具及技术。可能有些壳经过抓取进程映像(dump)可以轻易被搞定,这时处理反逆向技术彷佛没有必要,可是有些状况下加密壳的代码须要加以跟踪和分析,例如:多线程

须要躲过部分加密壳代码以便抓取进程映像、让输入表重建工具正确地工做。

深刻分析加密壳代码以便在一个反病毒产品中整合进脱壳支持。

此外,当反逆向技术被恶意程序直接应用,以防止跟踪并分析其恶意行为时,熟悉反逆向技术也是颇有价值的。

本文毫不是一个完整的反逆向技术的清单,由于它只涵盖了壳中经常使用的、有趣的一些技术。建议读者参阅最后一节的连接和图书资料,以了解更多其余逆向及反逆向的技术。

笔者但愿您以为这些材料有用,并能应用其中的技术。脱壳快乐!


2 调试器检测技术                                                             

本节列出了壳用来肯定进程是否被调试或者系统内是否有调试器正在运行的技术。这些调试器检测技术既有很是简单(明显)的检查,也有涉及到native APIs和内核对象的。

2.1 PEB.BeingDebugged Flag : IsDebuggerPresent()

最基本的调试器检测技术就是检测进程环境块(PEB)1中的BeingDebugged标志。kernel32!IsDebuggerPresent() API检查这个标志以肯定进程是否正在被用户模式的调试器调试。

下面显示了IsDebuggerPresent() API的实现代码。首先访问线程环境块(TEB)2获得PEB的地址,而后检查PEB偏移0x02位置的BeingDebugged标志。

mov                        eax, large fs: 18h

mov                       eax, [eax+30h]

movzx                    eax, byte ptr [eax+2]

retn

除了直接调用IsDebuggerPresent(),有些壳会手工检查PEB中的BeingDebugged标志以防逆向分析人员在这个API上设置断点或打补丁。

示例

下面是调用IsDebuggerPresent() API和使用PEB.BeingDebugged标志肯定调试器是否存在的示例代码。

;call kernel32!IsDebuggerPresent()

call                  [IsDebuggerPresent]

test                  eax,eax

jnz                   .debugger_found

 

;check PEB.BeingDebugged directly

Mov                eax,dword [fs:0x30]      ;EAX =  TEB.ProcessEnvironmentBlock

movzx             eax,byte [eax+0x02]      ;AL  =  PEB.BeingDebugged

test                  eax,eax

jnz                   .debugger_found

因为这些检查很明显,壳通常都会用后面章节将会讨论的垃圾代码或者反—反编译技术进行混淆。

对策

人工将PEB.BeingDebugged标志置0可轻易躲过这个检测。在数据窗口中Ctrl+G(前往表达式)输入fs:[30],能够在OllyDbg中查看PEB数据。

另外Ollyscript命令"dbh"能够补丁这个标志。

dbh

最后,Olly Advanced3 插件有置BeingDebugged标志为0的选项。

2.2  PEB.NtGlobalFlag , Heap.HeapFlags, Heap.ForceFlags

PEB.NtGlobalFlag  PEB另外一个成员被称做NtGlobalFlag(偏移0x68),壳也经过它来检测程序是否用调试器加载。一般程序没有被调试时,NtGlobalFlag成员值为0,若是进程被调试这个成员一般值为0x70(表明下述标志被设置):

FLG_HEAP_ENABLE_TAIL_CHECK(0X10)

FLG_HEAP_ENABLE_FREE_CHECK(0X20)

FLG_HEAP_VALIDATE_PARAMETERS(0X40)

这些标志是在ntdll!LdrpInitializeExecutionOptions()里设置的。请注意PEB.NtGlobalFlag的默认值能够经过gflags.exe工具或者在注册表如下位置建立条目来修改:

HKLM\Software\Microsoft\Windows Nt\CurrentVersion\Image File Execution Options

Heap Flags 因为NtGlobalFlag标志的设置,堆也会打开几个标志,这个变化能够在ntdll!RtlCreateHeap()里观测到。一般状况下为进程建立的第一个堆会将其Flags和ForceFlags4分别设为0x02(HEAP_GROWABLE)和0 。然而当进程被调试时,这两个标志一般被设为0x50000062(取决于NtGlobalFlag)和0x40000060(等于Flags AND 0x6001007D)。默认状况下当一个被调试的进程建立堆时下列附加的堆标志将被设置:

HEAP_TAIL_CHECKING_ENABLED(0X20)

HEAP_FREE_CHECKING_ENABLED(0X40)

示例

下面的示例代码检查PEB.NtGlobalFlag是否等于0,为进程建立的第一个堆是否设置了附加标志(PEB.ProcessHeap):

;ebx = PEB

Mov                ebx,[fs:0x30]

 

;Check if PEB.NtGlobalFlag != 0

Cmp                dword [ebx+0x68],0

jne                   .debugger_found

 

;eax = PEB.ProcessHeap

Mov                eax,[ebx+0x18]

 

;Check PEB.ProcessHeap.Flags

Cmp                dword [eax+0x0c],2

jne                   .debugger_found

 

;Check PEB.ProcessHeap.ForceFlags

Cmp                dword [eax+0x10],0

jne                   .debugger_found

对策

能够将 PEB.NtGlobalFlag和PEB.HeapProcess标志补丁为进程未被调试时的相应值。下面是一个补丁上述标志的ollyscript示例:

Var                  peb

var                  patch_addr

var                  process_heap

 

//retrieve PEB via a hardcoded TEB address( first thread: 0x7ffde000)

Mov                peb,[7ffde000+30]

 

//patch PEB.NtGlobalFlag

Lea                  patch_addr,[peb+68]

mov                 [patch_addr],0

 

//patch PEB.ProcessHeap.Flags/ForceFlags

Mov                process_heap,[peb+18]

lea                   patch_addr,[process_heap+0c]

mov                 [patch_addr],2

lea                   patch_addr,[process_heap+10]

mov                 [patch_addr],0

一样地Olly Advanced插件有设置PEB.NtGlobalFlag和PEB.ProcessHeap的选项。

2.3 DebugPort: CheckRemoteDebuggerPresent()/NtQueryInformationProcess()

Kernel32!CheckRemoteDebuggerPresent()是另外一个能够用于肯定是否有调试器被附加到进程的API。这个API内部调用了ntdll!NtQueryInformationProcess(),调用时ProcessInformationclass参数为ProcessDebugPort(7)。而NtQueryInformationProcess()检索内核结构EPROCESS5的DebugPort成员。非0的DebugPort成员意味着进程正在被用户模式的调试器调试。若是是这样的话,ProcessInformation 将被置为0xFFFFFFFF ,不然ProcessInformation 将被置为0。

Kernel32!CheckRemoteDebuggerPresent()接受2个参数,第1个参数是进程句柄,第2个参数是一个指向boolean变量的指针,若是进程被调试,该变量将包含TRUE返回值。

BOOL CheckRemoteDebuggerPresent(

  HANDLE     hProcess,

  PBOOL       pbDebuggerPresent

)

ntdll!NtQueryInformationProcess()有5个参数。为了检测调试器的存在,须要将ProcessInformationclass参数设为ProcessDebugPort(7):

NTSTATUS   NTAPI           NtQueryInformationProcess(

HANDLE                           ProcessHandle,

PROCESSINFOCLASS       ProcessInformationClass,

PVOID                               ProcessInformation,

ULONG                             ProcessInformationLength,

PULONG                    ReturnLength

)

示例

下面的例子显示了如何调用CheckRemoteDebuggerPresent()和NtQueryInformationProcess()来检测当前进程是否被调试:

; using Kernel32!CheckRemoteDebuggerPresent()

lea                eax,[.bDebuggerPresent]

push               eax                              ;pbDebuggerPresent

push 0xffffffff                                    ;hProcess

call                 [CheckRemoteDebuggerPresent]

cmp               dword [.bDebuggerPresent],0

jne                .debugger_found

 

; using ntdll!NtQueryInformationProcess(ProcessDebugPort)

lea                eax,[.dwReturnLen]

push               eax                              ;ReturnLength

push               4                                 ;ProcessInformationLength

lea                eax,[.dwDebugPort]

push               eax                              ;ProcessInformation

push               ProcessDebugPort         ;ProcessInformationClass(7)

push                0xffffffff                      ;ProcessHandle

call                  [NtQueryInformationProcess]

cmp               dword [.dwDebugPort],0

jne                  .debugger_found

对策

一种方法是在NtQueryInformationProcess()返回的地方设置断点,当这个断点被断下来后,将ProcessInformation 补丁为0。 下面是自动执行这个方法的ollyscript示例:

var                  bp_NtQueryInformationProcess

 

// set a breakpoint handler

eob                 bp_handler_NtQueryInformationProcess

 

// set a breakpoint where NtQueryInformationProcess returns

gpa                 "NtQueryInformationProcess","ntdll.dll"

find          $RESULT,#C21400#  //retn 14

mov         bp_NtQueryInformationProcess,$RESULT

bphws             bp_NtQueryInformationProcess,"X"

run

 

bp_handler_NtQueryInformationProcess:

 

//ProcessInformationClass == ProcessDebugPort?

cmp               [esp+8],7

jne                  bp_handler_NtQueryInformationProcess_continue

 

//patch ProcessInformation to 0

mov         patch_addr,[esp+c]

mov         [patch_addr],0

 

// clear breakpoint

bphwc             bp_NtQueryInformationProcess

 

bp_handler_NtQueryInformationProcess_continue:

run

Olly Advanced插件有一个patch NtQueryInformationProcess()的选项,这个补丁涉及注入一段代码来操纵NtQueryInformationProcess()的返回值。

2.4 Debugger Interrupts

在调试器中步过INT3和INT1指令的时候,因为调试器一般会处理这些调试中断,因此异常处理例程默认状况下将不会被调用,Debugger Interrupts就利用了这个事实。这样壳能够在异常处理例程中设置标志,经过INT指令后若是这些标志没有被设置则意味着进程正在被调试。另外,kernel32!DebugBreak()内部是调用了INT3来实现的,有些壳也会使用这个API。

示例

这个例子在异常处理例程中设置EAX的值为0xFFFFFFFF(经过CONTEXT6记录)以此来判断异常处理例程是否被调用:

; set exception handler

push         .exeception_handler

push         dword [fs:0]

mov         [fs:0],esp

 

;reset flag(EAX) invoke int3

xor           eax,eax

int3

 

;restore exception handler

pop          dword [fs:0]

add          esp,4

 

; check if the flag had been set

test          eax,eax

je             .debugger_found

:::

.exeception_handler:

;EAX = ContextRecord

mov         eax,[esp+0xc]

;set flag (ContextRecord.EAX)

mov         dword [eax+0xb0],0xffffffff

;set ContextRecord.EIP

inc           dword [eax+0xb8]

xor           eax,eax

retn

对策

因为调试中断而致使执行中止时,在OllyDbg中识别出异常处理例程(经过视图->SEH链)并下断点,而后Shift+F9将调试中断/异常传递给异常处理例程,最终异常处理例程中的断点会断下来,这时就能够跟踪了。

另外一个方法是容许调试中断自动地传递给异常处理例程。在OllyDbg中能够经过 选项-> 调试选项 -> 异常 -> 忽略下列异常 选项卡中钩选"INT3中断"和"单步中断"复选框来完成设置。

 

 

2.5 Timing Checks

当进程被调试时,调试器事件处理代码、步过指令等将占用CPU循环。若是相邻指令之间所花费的时间若是大大超出常规,就意味着进程极可能是在被调试,而壳正好利用了这一点。

示例

下面是一个简单的时间检查的例子。在某一段指令的先后用RDTSC指令(Read Time-Stamp Counter)并计算相应的增量。增量值0x200取决于两个RDTSC指令之间的代码执行量。

rdtsc

mov         ecx,eax

mov         ebx,edx

 

;...more instructions

nop

push         eax

pop          eax

nop

;...more instructions

 

;compute delta between RDTSC instructions

rdtsc

 

;Check high order bits

cmp         edx,ebx

ja             .debugger_found

;Check low order bits

sub          eax,ecx

cmp         eax,0x200

ja             .debugger_found

其它的时间检查手段包括使用kernel32!GetTickCount() API, 或者手工检查位于0x7FFE0000地址的SharedUserData7数据结构的TickCountLow 及TickCountMultiplier 成员。

使用垃圾代码或者其它混淆技术进行隐藏之后,这些时间检查手段尤为是使用RDTSC将会变得难于识别。

对策

一种方法就是找出时间检查代码的确切位置,避免步过这些代码。逆向分析人员能够在增量比较代码以前下断而后用 运行 代替 步过 直到断点断下来。另外也能够下GetTickCount()断点以肯定这个API在什么地方被调用或者用来修改其返回值。

Olly Advanced采用另外一种方法——它安装了一个内核模式驱动程序作如下工做:

1 设置控制寄存器CR48中的时间戳禁止位(TSD),当这个位被设置后若是RDTSC指令在非Ring0下执行将会触发一个通用保护异常(GP)。

2 中断描述表(IDT)被设置以挂钩GP异常而且RTDSC的执行被过滤。若是是因为RDTSC指令引起的GP,那么仅仅将前次调用返回的时间戳加1。

值得注意的是上面讨论的驱动可能会致使系统不稳定,应该始终在非生产机器或虚拟机中进行尝试。

2.6 SeDebugPrivilege

默认状况下进程是没有SeDebugPrivilege权限的。然而进程经过OllyDbg和WinDbg之类的调试器载入的时候,SeDebugPrivilege权限被启用了。这种状况是因为调试器自己会调整并启用SeDebugPrivilege权限,当被调试进程加载时SeDebugPrivilege权限也被继承了。

一些壳经过打开CSRSS.EXE进程间接地使用SeDebugPrivilege肯定进程是否被调试。若是可以打开CSRSS.EXE意味着进程启用了SeDebugPrivilege权限,由此能够推断进程正在被调试。这个检查能起做用是由于CSRSS.EXE进程安全描述符只容许SYSTEM访问,可是一旦进程拥有了SeDebugPrivilege权限,就能够忽视安全描述符9而访问其它进程。注意默认状况下这一权限仅仅授予了Administrators组的成员。

示例

下面是SeDebugPrivilege检查的例子:

;query for the PID of CSRSS.EXE

call                 [CsrGetProcessId]

 

;try to open the CSRSS.EXE process

push                eax

push                FALSE

push                PROCESS_QUERY_INFORMATION

call                 [OpenProcess]

 

;if OpenProcess() was successful,

;process is probably being debugged

test                 eax,eax

jnz                  .debugger_found

这里使用了ntdll!CsrGetProcessId() API获取CSRSS.EXE的PID,可是壳也可能经过手工枚举进程来获得CSRSS.EXE的PID。若是OpenProcess()成功则意味着SeDebugPrivilege权限被启用,这也意味着进程极可能被调试。

对策

一种方法是在ntdll!NtOpenProcess()返回的地方设断点,一旦断下来后,若是传入的是CSRSS.EXE的PID则修改EAX值为0xC0000022(STATUS_ACCESS_DENIED)。

2.7 Parent Process(检测父进程)

一般进程的父进程是explorer.exe(双击执行的状况下),父进程不是explorer.exe说明程序是由另外一个不一样的应用程序打开的,这极可能就是程序被调试了。

下面是实现这种检查的一种方法:

1 经过TEB(TEB.ClientId)或者使用GetCurrentProcessId()来检索当前进程的PID

2 用Process32First/Next()获得全部进程的列表,注意explorer.exe的PID(经过PROCESSENTRY32.szExeFile)和经过PROCESSENTRY32.th32ParentProcessID得到的当前进程的父进程PID

3 若是父进程的PID不是explorer.exe的PID,则目标进程极可能被调试

可是请注意当经过命令行提示符或默认外壳非explorer.exe的状况下启动可执行程序时,这个调试器检查会引发误报。

对策

Olly Advanced提供的方法是让Process32Next()老是返回fail,这样壳的进程枚举代码将会失效,因为进程枚举失效PID检查将会被跳过。这些是经过补丁 kernel32!Process32NextW()的入口代码(将EAX值设为0而后直接返回)实现的。

77E8D1C2 >  33C0            xor     eax, eax

77E8D1C4    C3              retn

77E8D1C5    83EC 0C         sub     esp, 0C

2.8 DebugObject: NtQueryObject()

除了识别进程是否被调试以外,其余的调试器检测技术牵涉到检查系统当中是否有调试器正在运行。

逆向论坛中讨论的一个有趣的方法就是检查DebugObject10类型内核对象的数量。这种方法之因此有效是由于每当一个应用程序被调试的时候,将会为调试对话在内核中建立一个DebugObject类型的对象。

DebugObject的数量能够经过ntdll!NtQueryObject()检索全部对象类型的信息而得到。NtQueryObject接受5个参数,为了查询全部的对象类型,ObjectHandle参数被设为NULL,ObjectInformationClass参数设为ObjectAllTypeInformation(3):

NTSTATUS NTAPI NtQueryObject(

HANDLE                                           ObjectHandle,

OBJECT_INFORMATION_CLASS      ObjectInformationClass,

PVOID                                               ObjectInformation,

ULONG                                             Length,

PULONG                                           ResultLength

)

这个API返回一个OBJECT_ALL_INFORMATION结构,其中NumberOfObjectsTypes成员为全部的对象类型在ObjectTypeInformation数组中的计数:

typedef struct _OBJECT_ALL_INFORMATION{

ULONG                                             NumberOfObjectsTypes;

OBJECT_TYPE_INFORMATION        ObjectTypeInformation[1];

}

检测例程将遍历拥有以下结构的ObjectTypeInformation数组:

typedef struct _OBJECT_TYPE_INFORMATION{

[00] UNICODE_STRING      TypeName;

[08] ULONG                        TotalNumberofHandles;

[0C] ULONG                        TotalNumberofObjects;

...more fields...

}

TypeName成员与UNICODE字符串"DebugObject"比较,而后检查TotalNumberofObjects 或 TotalNumberofHandles 是否为非0值。

对策

与NtQueryInformationProcess()解决方法相似,在NtQueryObject()返回处设断点,而后补丁 返回的OBJECT_ALL_INFORMATION结构,另外NumberOfObjectsTypes成员能够置为0以防止壳遍历ObjectTypeInformation数组。能够经过建立一个相似于NtQueryInformationProcess()解决方法的ollyscript脚原本执行这个操做。

相似地,Olly Advanced插件向NtQueryObject() API中注入代码,若是检索的是ObjectAllTypeInformation类型则用0清空整个返回的缓冲区。

2.9 Debugger Window

调试器窗口的存在标志着有调试器正在系统内运行。因为调试器建立的窗口拥有特定类名(OllyDbg的是OLLYDBG,WinDbg的是WinDbgFrameClass),使用user32!FindWindow()或者user32!FindWindowEx()能很容易地识别这些调试器窗口。

示例

下面的示例代码使用FindWindow()查找OllyDbg或WinDbg建立的窗口来识别他们是否正在系统中运行。

push                NULL

push                .szWindowClassOllyDbg

call                 [FindWindowA]

test                 eax,eax

jnz                  .debugger_found

 

push                NULL

push                .szWindowClassWinDbg

call                 [FindWindowA]

test                 eax,eax

jnz                  .debugger_found

 

.szWindowClassOllyDbg  db “OLLYDBG”,0

.szWindowClassWinDbg  db “WinDbgFrameClass”,0

对策

一种方法是在FindWindow()/FindWindowEx()的入口处设断点,断下来后,改变lpClassName参数的内容,这样API将会返回fail,另外一种方法就是直接将返回值设为NULL。

2.10 Debugger Process

另一种识别系统内是否有调试器正在运行的方法是列出全部的进程,检查进程名是否与调试器(如 OLLYDBG.EXE,windbg.exe等)的相符。实现很直接,利用Process32First/Next()而后检查映像名称是否与调试器相符就好了。

有些壳也会利用kernel32!ReadProcessMemory()读取进程的内存,而后寻找调试器相关的字符串(如”OLLYDBG”)以防止逆向分析人员修改调试器的可执行文件名。一旦发现调试器的存在,壳要么显示一条错误信息,要么默默地退出或者终止调试器进程。

对策

和父进程检查相似,能够经过补丁 kernel32!Process32NextW() 使其老是返回fail值来防止壳枚举进程。

2.11 Device Drivers

检测内核模式的调试器是否活跃于系统中的典型技术是访问他们的设备驱动程序。该技术至关简单,仅涉及调用kernel32!CreateFile()检测内核模式调试器(如SoftICE)使用的那些众所周知的设备名称。

示例

一个简单的检查以下:

push         NULL

push         0

push         OPEN_EXISTING

push         NULL

push         FILE_SHARE_READ

push         GENERIC_READ

push         .szDeviceNameNtice

call          [CreateFileA]

cmp         eax,INVALID_HANDLE_VALUE

jne           .debugger_found

 

.szDeviceNameNtice   db "\\.\NTICE",0

某些版本的SoftICE会在设备名称后附加数字致使这种检查失败,逆向论坛中相关的描述是穷举附加的数字直到发现正确的设备名称。新版壳也用设备驱动检测技术检测诸如Regmon和Filemon之类的系统监视程序的存在。

对策

一种简单的方法就是在kernel32!CreateFileW()内设置断点,断下来后,要么操纵FileName参数要么改变其返回值为INVALID_HANDLE_VALUE(0xFFFFFFFF)。

2.12 OllyDbg:Guard Pages

这个检查是针对OllyDbg的,由于它和OllyDbg的内存访问/写入断点特性相关。

除了硬件断点和软件断点外,OllyDbg容许设置一个内存访问/写入断点,这种类型的断点是经过页面保护11来实现的。简单地说,页面保护提供了当应用程序的某块内存被访问时得到通知这样一个途径。

页面保护是经过PAGE_GUARD页面保护修改符来设置的,若是访问的内存地址是受保护页面的一部分,将会产生一个STATUS_GUARD_PAGE_VIOLATION(0x80000001)异常。若是进程被OllyDbg调试而且受保护的页面被访问,将不会抛出异常,访问将会被看成内存断点来处理,而壳正好利用了这一点。

示例

下面的示例代码中,将会分配一段内存,并将待执行的代码保存在分配的内存中,而后启用页面的PAGE_GUARD属性。接着初始化标设符EAX为0,而后经过执行内存中的代码来引起STATUS_GUARD_PAGE_VIOLATION异常。若是代码在OllyDbg中被调试,由于异常处理例程不会被调用因此标设符将不会改变。

;set up exception handler

push         .exception_handle

push         dword [fs:0]

mov         [fs:0],esp

 

;allocate memory

push         PAGE_READWRITE

push         MEM_COMMIT

push         0x1000

push         NULL

call          [VirtualAlloc]

test          eax,eax

jz             .failed

mov         [.pAllocatedMem],eax

 

;store a RETN on the allocated memory

mov         byte [eax],0xC3

;then set the PAGE_GUARD attribute of the allocated memory

lea           eax,[.dwOldProtect]

push         eax

push         PAGE_EXECUTE_READ | PAGE_GUARD

push         0x1000

push         dword [.pAllocatedMem]

call          [VirtualProtect]

 

;set marker (EAX) as 0

xor           eax,eax

;trigger a STATUS_GUARD_PAGE_VIOLATION exception

call          [.pAllocatedMem]

;check if marker had not been changed (exception handler not called)

test          eax,eax

je             .debugger_found

 

.exception_handler

;EAX = CONTEXT record

mov         eax,[esp+0xC]

;set marker (CONTEXT.EAX) to 0xFFFFFFFF

;to signal that the exception handler was called

mov         dword [eax+0xb0],0xFFFFFFFF

xor           eax,eax

retn

对策

因为页面保护引起一个异常,逆向分析人员能够故意引起一个异常,这样异常处理例程将会被调用。在示例中,逆向分析人员能够用INT3指令替换掉RETN指令,一旦INT3指令被执行,Shift+F9强制调试器执行异常处理代码。这样当异常处理例程调用后,EAX将被设为正确的值,而后RETN指令将会被执行。

若是异常处理例程里检查异常是否真地是STATUS_GUARD_PAGE_VIOLATION,逆向分析人员能够在异常处理例程中下断点而后修改传入的ExceptionRecord参数,具体来讲就是ExceptionCode, 手工将ExceptionCode设为STATUS_GUARD_PAGE_VIOLATION便可。

3 断点和补丁检测技术                                                          

本节列举了壳最经常使用的识别软件断点、硬件断点和补丁的方法。

3.1 Software Breakpoint Detection

软件断点是经过修改目标地址代码为0xCC(INT3/Breakpoint Interrupt)来设置的断点。壳经过在受保护的代码段和(或)API函数中扫描字节0xCC来识别软件断点。

示例

检测可能和下面同样简单:

cld

mov         edi,Protected_Code_Start

mov         ecx,Protected_Code_End - Protected_Code_Start

mov         al,0xcc

repne       scasb

jz             .breakpoint_found

有些壳对比较的字节值做了些运算使得检测变得不明显,例如:

if ( byte XOR 0x55 == 0x99 ) then breakpoint found

Where:   0x99 == 0xCC XOR 0x55

对策

若是软件断点被发现了逆向分析人员可使用硬件断点来代替。若是须要在API内部下断,可是壳又检测API内部的断点,逆向分析人员能够在最终被ANSI版API调用的UNICODE版的API下断(如:用LoadLibraryExW代替LoadLibraryA),或者用相应的native API来代替。

3.2 Hardware Breakpoint Detection

另外一种断点称之为硬件断点,硬件断点是经过设置名为Dr0到Dr7的调试寄存器12来实现的。Dr0-Dr3包含至多4个断点的地址,Dr6是个标志,它指示哪一个断点被触发了,Dr7包含了控制4个硬件断点诸如启用/禁用或者中断于读/写的标志。

因为调试寄存器没法在Ring3下访问,硬件断点的检测须要执行一小段代码。壳利用了含有调试寄存器值的CONTEXT结构,CONTEXT结构能够经过传递给异常处理例程的ContextRecord参数来访问。

示例

这是一段查询调试寄存器的示例代码:

; set up exception handler

push         .exception_handler

push         dword [fs:0]

mov         [fs:0],esp

 

;eax will be 0xFFFFFFFF if hardware breakpoints are identified

xor           eax,eax

 

;throw an exception

mov         dword [eax],0

 

;restore exception handler

pop          dword [fs:0]

add          esp,4

 

;test if EAX was updated (breakpoint identified)

test          eax,eax

jnz           .breakpoint_found

:::

.exception_handler

;EAX = CONTEXT record

mov         eax,[esp+0xc]

 

;check if Debug Registers Context.Dr0-Dr3 is not zero

cmp         dword [eax+0x04],0

jne           .hardware_bp_found

cmp         dword [eax+0x08],0

jne           .hardware_bp_found

cmp         dword [eax+0x0c],0

jne           .hardware_bp_found

cmp         dword [eax+0x10],0

jne           .hardware_bp_found

jmp          .exception_ret

 

.hardware_bp_found

;set Context.EAX to signal breakpoint found

mov         dword [eax+0xb0],0xFFFFFFFF

 

.exception_ret

;set Context.EIP upon return

add          dword [eax+0xb8],6

xor           eax,eax

retn

有些壳也利用调试寄存器的值做为解密密钥的一部分。这些调试寄存器要么初始化为一个特定值要么为0。所以,若是这些调试寄存器被修改,解密将会失败。当解密的代码是受保护的程序或者脱壳代码的一部分的时候,将致使无效指令并形成程序一些意想不到的终止。

对策

若是壳没检测软件断点,逆向分析人员能够尝试使用软件断点,一样OllyDbg的内存读/写断点也可使用。当逆向分析人员须要设置API断点的时候在native或者是UNICODE版的API内部设软件断点也是可行的。

3.3 Patching Detection via Code Checksum Calculation

补丁检测技术能识别壳的代码是否被修改(代码被修改则意味着反调试例程已经被禁用了),其次也能识别是否设置了软件断点。补丁检测是经过代码校验来实现的,校验计算包括从简单到复杂的校验和/哈希算法。

示例

下面是一个比较简单的校验和计算的例子:

mov                esi,Protected_Code_Start

mov                ecx,Protected_Code_End - Protected_Code_Start

xor                  eax,eax

.checksum_loop

movzx             ebx,byte [esi]

add                 eax,ebx

rol                  eax,1

inc                  esi

loop                .checksum_loop

 

cmp               eax,dword [.dwCorrectChecksum]

jne                  .patch_found

对策

若是代码校验例程识别出了软件断点,能够用硬件断点来代替。若是校验例程识别出了代码补丁,逆向分析人员能够经过在补丁地址设置内存访问断点来定位校验例程所在,一旦发现了校验例程,能够修改校验和为预期的值或者在比较失败后修改适当的标志。

4反分析技术                                                                 

反分析技术的目标是减缓逆向分析人员对受保护代码和(或)加壳后的程序分析和理解的速度。咱们将讨论诸如加密/压缩、垃圾代码、代码变形、反-反编译等技术,这些技术的目的是为了混淆代码、考验耐心、浪费逆向分析人员的时间,解决这些问题须要逆向分析人员拥有耐心、聪慧等品质。

4.1 Encryption and Compression

加密和压缩是最基本的反分析形式。它们初步设防,防止逆向分析人员直接在反编译器内加载受保护的程序而后没有任何困难地开始分析。

加密 壳一般都既加密自己代码也加密受保护的程序。不一样的壳所采用的加密算法大不相同,有很是简单的XOR循环,也有执行数次运算的很是复杂的循环。对于某些多态变形壳,为了防止查壳工具正确地识别壳,每次加壳所采用的加密算法都不一样,解密代码也经过变形显得很不同。

解密例程做为一个取数、计算、存诸操做的循环很容易辨认。下面是一个对加密过的DWORD值执行数次XOR操做的简单的解密例程。

0040A07C       LODS DWORD PTR DS:[ESI]

0040A07D       XOR EAX,EBX

0040A07F       SUB EAX,12338CC3

0040A084       ROL EAX,10

0040A087       XOR EAX,799F82D0

0040A08C       STOS DWORD PTR ES:[EDI]

0040A08D       INC EBX

0040A08E       LOOPD SHORT 0040A07C ;decryption loop

这里是另外一个多态变形壳的解密例程:

00476056        MOV BH,BYTE PTR DS:[EAX]

00476058        INC ESI

00476059        ADD BH,0BD

0047605C        XOR BH,CL

0047605E        INC ESI

0047605F      DEC EDX

00476060         MOV BYTE PTR DS:[EAX],BH

00476062        CLC

00476063        SHL EDI,CL

:::More garbage code

00476079       INC EDX

0047607A        DEC EDX

0047607B        DEC EAX

0047607C        JMP SHORT 0047607E

0047607E        DEC ECX

0047607F        JNZ 00476056 ;decryption loop

下面是由同一个多态壳生成的另外一段解密例程:

0040C045       MOV CH,BYTE PTR DS:[EDI]

0040C047        ADD EDX,EBX

0040C049        XOR CH,AL

0040C04B       XOR CH,0D9

0040C04E       CLC

0040C04F       MOV BYTE PTR DS:[EDI],CH

0040C051        XCHG AH,AH

0040C053        BTR EDX,EDX

0040C056        MOVSX EBX,CL

::: More garbage code

0040C067        SAR EDX,CL

0040C06C       NOP

0040C06D       DEC EDI

0040C06E       DEC EAX

0040C06F       JMP SHORT 0040C071

0040C071       JNZ 0040C045 ;decryption loop

上面两个示例中高亮的行是主要的解密指令,其他的指令都是用来迷惑逆向分析人员的垃圾代码。注意寄存器是如何交换的,还有两个示例之间解密方法是如何改变的。

Compression 压缩的主要目的是为了缩小可执行文件代码和数据的大小,可是因为原始的包含可读字符串的可执行文件变成了压缩数据,所以也有那么一些混淆的做用。看看几款壳所使用的压缩引擎:UPX使用NRV(Not Really Vanished)和LZMA(Lempel-Ziv-Markov chain-Algorithm),FSG使用aPLib,Upack使用LZMA,yoda加密壳使用LZO。这其中有些压缩引擎能够自由地使用于非商业应用,可是商业应用须要许可/注册。

对策

解密和解压缩循环很容易就能被躲过,逆向分析人员只须要知道解密和解压缩循环什么时候结束,而后在循环结束后面的指令上下断点。记住,有些壳会在解密循环中检测断点。

4.2 Garbage Code and Code Permutation

Garbage Code 在脱壳的例程中插入垃圾代码是另外一种有效地迷惑逆向分析人员的方法。它的目的是在加密例程或者诸如调试器检测这样的反逆向例程中掩盖真正目的的代码。经过将本文描述过的调试器/断点/补丁检测技术隐藏在一大堆无关的、不起做用的、混乱的指令中,垃圾代码能够增长这些检测的效果。此外,有效的垃圾代码是那些看似合法/有用的代码。

示例

下面是一段在相关的指令中插入了垃圾代码的解密例程:

0044A21A       JMP SHORT sample.0044A21F

0044A21C       XOR DWORD PTR SS:[EBP],6E4858D

0044A223       INT 23

0044A225       MOV ESI,DWORD PTR SS:[ESP]

0044A228       MOV EBX,2C322FF0

0044A22D        LEA EAX,DWORD PTR SS:[EBP+6EE5B321]

0044A233       LEA ECX DWORD PTR DS:[ESI+543D583E]

0044A239       ADD EBP,742C0F15

0044A23F       ADD DWORD PTR DS:[ESI],3CB3AA25

0044A245       XOR EDI,7DAC77E3

0044A24B       CMP EAX,ECX

0044A24D       MOV EAX,5ACAC514

0044A252       JMP SHORT sample.0044A257

0044A254       XOR DWORD PTR SS:[EBP],AAE47425

0044A25B       PUSH ES

0044A25C       ADD EBP,5BAC5C22

0044A262        ADC ECX,3D71198C

0044A268       SUB ESI,-4

0044A26B       ADC ECX,3795A210

0044A271       DEC EDI

0044A272       MOV EAX,2F57113F

0044A277       PUSH ECX

0044A278       POP ECX

0044A279       LEA EAX,DWORD PTR SS:[EBP+3402713D]

0044A27F       EDC EDI

0044A280       XOR DWORD PTR DS:[ESI],33B568E3

0044A286        LEA EBX,DWORD PTR DS:[EDI+57DEFEE2]

0044A28C       DEC EDI

0044A28D       SUB EBX,7ECDAE21

0044A293       MOV EDI,185C5C6C

0044A298       MOV EAX,4713E635

0044A29D       MOV EAX,4

0044A2A2       ADD ESI,EAX

0044A2A4       MOV ECX,1010272F

0044A2A9       MOV ECX,7A49B614

0044A2AE      CMP EAX,ECX

0044A2B0       NOT DWORD PTR DS:[ESI]

示例中相关的解密指令是:

0044A225       MOV ESI,DWORD PTR SS:[ESP]

0044A23F       ADD DWORD PTR DS:[ESI],3CB3AA25

0044A268       SUB ESI,-4

0044A280       XOR DWORD PTR DS:[ESI],33B568E3

0044A29D       MOV EAX,4

0044A2A2       ADD ESI,EAX

0044A2B0       NOT DWORD PTR DS:[ESI]

Code Permutation 代码变形是更高级壳使用的另外一种技术。经过代码变形,简单的指令变成了复杂的指令序列。这要求壳理解原有的指令并能生成新的执行相同操做的指令序列。

一个简单的指令置换示例:

mov        eax,ebx

test          eax,eax

转换成下列等价的指令:

push        ebx

pop          eax

or            eax,eax

结合垃圾代码使用,代码变形是一种有效地减缓逆向分析人员理解受保护代码速度的技术。

示例

为了说明,下面是一个经过代码变形并在置换后的代码间插入了垃圾代码的调试器检测例程:

004018A8       MOV ECX,A104B412

004018AD       PUSH 004018C1

004018B2        RETN

004018B3        SHR EDX,5

004018B6        ADD ESI,EDX

004018B8        JMP SHORT 004018BA

004018BA       XOR EDX,EDX

004018BC       MOV EAX,DWORD PTR DS:[ESI]

004018BE       STC

004018BF       JB SHORT 004018DE

004018C1        SUB ECX,EBX

004018C3        MOV EDX,9A01AB1F

004018C8        MOV ESI,DWORD PTR FS:[ECX]

004018CB       LEA ECX DWORD PTR DS:[EDX+FFFF7FF7]

004018D1       MOV EDX,600

004018D6       TEST ECX,2B73

004018DC       JMP SHORT 004018B3

004018DE       MOV ESI,EAX

004018E0        MOV EAX,A35ABDE4

004018E5        MOV ECX,FAD1203A

004018EA       MOV EBX,51AD5EF2

004018EF        DIV EBX

004018F1        ADD BX,44A5

004018F6        ADD ESI,EAX

004018F8        MOVZX EDI,BYTE PTR DS:[ESI]

004018FB       OR EDI,EDI

004018FD       JNZ SHORT 00401906

其实这是一个很简单的调试器检测例程:

00401081       MOV EAX,DWORD PTR FS:[18]

00401087       MOV EAX,DWORD PTR DS:[EAX+30]

0040108A       MOVZX EAX,BYTE PTR DS:[EAX+2]

0040108E       TEST EAX,EAX

00401090       JNZ SHORT 00401099

对策

垃圾代码和代码变形是一种用来考验耐心和浪费逆向分析人员的时间的方式。所以,重要的是知道这些混淆技术背后隐藏的指令是否值得去理解(是否是仅仅执行解密、壳的初始化等动做)。

避免跟踪进入这些难懂的指令的方法之一是在壳最经常使用的API下断点(如:VirtualAlloc,VitualProtect,LoadLibrary,GetProcAddress等)并把这些API看成跟踪的标志。若是在这些跟踪标志之间出了错,这时候就对这一段代码进行详细的跟踪。另外,设置内存访问/写入断点也让逆向分析人员能有针对性地分析那些修改/访问受保护进程最有趣的部分的代码,而不是跟踪大量的代码最终却(极可能)发现是一个肯定的例程。

最后,在VMWare中运行OllyDbg并不时地保存调试会话快照,这样一来逆向分析人员就能够回到某一个特定的跟踪状态。若是出了错,能够返回到某一特定的跟踪状态继续跟踪分析。

4.3 Anti-Disassembly

用来困惑逆向分析人员的另外一种方法就是混乱反编译输出。反-反编译是使经过静态分析理解二进制代码的过程大大复杂化的有效方式。若是结合垃圾代码和代码变形一块儿使用将会更具效果。

反-反编译技术的一个具体的例子是插入一个垃圾字节而后增长一个条件分支使执行跳转到垃圾字节(译者注:即咱们常说的花指令)。可是这个分支的条件永远为FALSE。这样垃圾代码将永远不会被执行,可是反编译引擎会开始反编译垃圾字节的地址,最终致使不正确的反编译输出。

示例

这是一个加了一些反-反编译代码的简单PEB.BeingDebugged标志检查例子。高亮的行是主要指令,其他的是反-反编译代码。它用到了垃圾字节0xff并增长了用来迷惑反编译引擎的跳到垃圾字节的假的条件跳转。

;Anti-disassembly sequence #1

push        .jmp_real_01

stc

jnc           .jmp_fake_01

retn

.jmp_fake_01:

db            0xff

.jmp_real_01:

;--------------------------------

mov eax,dword [fs:0x18]

 

;Anti-disassembly sequence #2

push        .jmp_real_02

clc

jc             .jmp_fake_02

retn

.jmp_fake_02:

db            0xff

.jmp_real_02:

;--------------------------------

mov        eax,dword [eax+0x30]

movzx      eax,byte [eax+0x02]

test          eax,eax

jnz           .debugger_found

下面是WinDbg中的反汇编输出:

0040194A 6854194000          PUSH 0X401954

0040194F F9                         STC

00401950 7301                      JNB image00400000+0x1953(00401953)

00401952 C3                         RET

00401953 FF64A118               JMP DWORD PTR [ECX+0X18]

00401957 0000                      ADD [EAX],AL

00401959 006864                  ADD [EAX+0X64],CH

0040195C 194000                  SBB [EAX],EAX

0040195F F8                         CLC

00401960 7201                      JB image00400000+0x1963 (00401963)

00401962 C3                         RET

00401963 FF8B40300FB6      DEC DWORD PTR [EBX+0XB60F3040]

00401969 40                         INC EAX

0040196A 0285C0750731      ADD AL,[EBP+0X310775C0]

OllyDbg中的反汇编输出:

0040194A 6854194000          PUSH 00401954

0040194F F9                         STC

00401950 7301                      JNB SHORT 00401953

00401952 C3                         RETN

00401953 FF64A118               JMP DWORD PTR DS:[ECX+18]

00401957 0000                      ADD BYTE PTR DS:[EAX],AL

00401959 006864                  ADD BYTE PTR DS:[EAX+0X64],CH

0040195C 194000                  SBB DWORD PTR DS:[EAX],EAX

0040195F F8                         CLC

00401960 7201                      JB SHORT 00401963

00401962 C3                         RETN

00401963 FF8B40300FB6      DEC DWORD PTR DS:[EBX+B60F3040]

00401969 40                         INC EAX

0040196A 0285C0750731      ADD AL,BYTE PTR SS:[EBP+310775C0]

最后IDAPro中的反汇编输出:

0040194A                      push (offset loc_401953+1)

0040194F                      stc

00401950                       jnb short loc_401953

00401952                       retn

00401953 ;------------------------------------------------------------------

00401953

00401953 loc-401953:                          ;CODE XREF: sub_401946+A

00401953                                    ;DATA XREF: sub_401946+4

00401953                       jmp dword ptr [ecx+18h]

00401953 sub_401946    endp

00401953

00401953 ;------------------------------------------------------------------

00401957                       db 0

00401958                       db 0

00401959                       db 0

0040195A                      db 68h; h

0040195B                      dd offset unk_401964

0040195F                      db 0F8h;

00401960                       db 72h; r

00401961                       db 1

00401962                       db 0C3h;+

00401963                       db 0FFh

00401964 unk_401964    db 8Bh; i        ;DATA XREF: text:0040195B

00401965                       db 40h; @

00401966                       db 30h; 0

00401967                       db 0Fh

00401968                       db 0B6h;|

00401969                       db 40h; @

0040196A                      db 2

0040196B                      db 85h;

0040196C                      db 0C0h;+

0040196D                      db 75h; u

注意全部这三个反编译引擎/调试器是如何落入反-反编译陷阱的,分析这样的反汇编代码对于逆向分析人员来讲是很不容易的。还有其它的几种干扰反编译引擎的手段,这只是一个例子。另外这些反-反编译代码能够编码成一个宏,这样汇编源码就清晰多了。

建议读者参考Eldad Eliam13的一本精彩的逆向书籍,里面包含了反-反编译的详细信息和其它一些逆向话题。

5 调试器攻击技术                                                             

本节罗列了壳用来主动攻击调试器的技术,若是进程正在被调试那么执行会忽然中止、断点将被禁用。和前面描述的技术相似,结合反-反编译技术隐藏起来使用效果会更佳。

5.1 Misdirection and Stopping Execution via Exceptions

线性地跟踪可以让逆向分析人员容易理解并掌握代码的真正目的。所以壳使用一些技术使得跟踪代码再也不是线性的且更加费时。

一个广泛使用的技巧是在脱壳的过程当中抛出一些异常,经过抛出一些可捕获的异常,逆向分析人员必需熟悉异常发生的时候EIP指向何处,当异常处理例程执行完以后EIP又指向何处。

另外异常是壳用来反复中止脱壳代码执行的手段之一,由于当进程被调试时抛出异常,调试器会暂停脱壳代码的执行。

壳一般使用结构化异常处理(SEH)14做为异常处理的机制,然而新壳也开始使用向量化异常15

示例

下面示例代码抛出溢出异常(经过INTO)产生错误,经过数轮循环后由ROL指令来修改溢出标志。可是因为溢出异常是一个陷阱异常,EIP将指向JMP指令。若是逆向分析人员使用OllyDbg而且没有将异常传递给进程(经过Shift+F7/F8/F9)而是继续步进,进程将会进入一个死循环。

;set up exception handler

push         .exception_handler

push         dword [fs:0]

mov         [fs:0],esp

 

;throw an exception

mov         ecx,1

.loop:

rol           ecx,1

into

jmp          .loop

 

;restore exception handler

pop          dword [fs:0]

add          esp,4

:::

.exception_handler

;EAX = CONTEXT record

mov         eax,[esp+0xc]

;set   Context.EIP upon return

add          dword [eax+0xb8],2

xor           eax,eax

retn

壳一般会抛出违规访问(0xC0000005)、断点(0x80000003)和单步(0x80000004)异常。

对策

当壳使用可捕获的异常仅仅是为了执行不一样的代码时,能够经过选项-> 调试选项 -> 异常选项卡配置OllyDbg使得异常处理例程自动被调用。下面是异常处理配置对话框的屏幕截图。逆向分析人员也能够添加那些不能经过复选框选择的自定义的异常。

当壳在异常处理例程内部执行重要操做时,逆向分析人员能够在异常处理例程中下断,其地址能够在OllyDbg中经过视图->SEH链看到。而后Shift+F7/F8/F9将控制移交给异常处理例程。

5.2 Blocking Input

为了防止逆向分析人员控制调试器,当脱壳主例程运行的时候,壳能够经过调用user32!BlockInput() API 来阻断键盘和鼠标的输入。经过垃圾代码和反-反编译技术进行隐藏使用这种方法,若是逆向分析人员没有识别出来的话是颇有效的。一旦生效系统看上去没有反应,只剩下逆向分析人员在那里莫名其妙。

典型的场景多是逆向分析人员在GetProcAddress()内下断,而后运行脱壳代码直到被断下。可是跳过一段垃圾代码以后壳调用BlockInput()。当GetProcAddress()断点断下来后,逆向分析人员会忽然困惑地发现没法控制调试器了,不知究竟发生了什么。

示例

BlockInput()须要一个boolean型的参数fBlockIt。若是这个参数是true,键盘和鼠标事件被阻断;若是是false,键盘和鼠标事件被解除阻断:

; Block input

push                TRUE

call                 [BlockInput]

 

;...Unpacking code...

 

;Unblock input

push                FALSE

call                 [BlockInput]

对策

幸亏最简单的方法就是补丁 BlockInput()使它直接返回。这是补丁user32!BlockInput()入口的ollyscript脚本:

gpa          "BlockInput","user32.dll"

mov        [$RESULT],#C20400#  //retn 4

Olly Advanced插件一样有补BlockInput()的选项。另外,能够同时按CTRL+ALT+DELETE键手工解除阻断。

5.3 ThreadHideFromDebugger

这项技术用到了经常被用来设置线程优先级的API ntdll!NtSetInformationThread(),不过这个API也可以用来防止调试事件被发往调试器。

NtSetInformationThread()的参数列表以下。要实现这一功能,ThreadHideFromDebugger(0x11)被看成ThreadInformationClass参数传递,ThreadHandle一般设为当前线程的句柄(0xFFFFFFFE):

NTSTATUS NTAPI NtSetInformationThread(

HANDLE                                           ThreadHandle,

THREAD_INFORMATION_CLASS     ThreadInformaitonClass,

PVOID                                               ThreadInformation,

ULONG                                             ThreadInformationLength

);

ThreadHideFromDebugger内部设置内核结构ETHREAD16的HideThreadFromDebugger成员。一旦这个成员设置之后,主要用来向调试器发送事件的内核函数_DbgkpSendApiMessage()将再也不被调用。

示例

调用NtSetInformationThread()的一个典型示例:

push         0                                               ;InformationLength

push         NULL                                       ;ThreadInformation

push         ThreadHideFromDebugger          ;0x11

push         0xfffffffe                                    ;GetCurrentThread()

call          [NtSetInformationThread]

对策

能够在ntdll!NtSetInformationThread()里下断,断下来后,逆向分析人员能够操纵EIP防止API调用到达内核,这些均可以经过ollyscript来自动完成。另外,Olly Advanced插件也有补这个API的选项。补过以后一旦ThreadInformaitonClass参数为HideThreadFromDebugger,API将再也不深刻内核仅仅执行一个简单的返回。

5.4 Disabling Breakpoints

另一种攻击调试器的方法就是禁用断点。壳经过CONTEXT结构修改调试寄存器来禁用硬件断点。

示例

在这个示例中,经过传入异常处理例程的CONTEXT记录,调试寄存器被清空了。

;set up exception handler

push         .exception_handler

push         dword [fs:0]

mov         [fs:0],esp

 

;throw an exception

xor           eax,eax

mov         dword [eax],0

 

;restore exception handler

pop          dword [fs:0]

add          esp,4

:::

 

.exception_handler

;EAX = CONTEXT record

mov         eax,[esp+0xc]

 

;Clear Debug Registers: Context.Dr0-Dr3,Dr6,Dr7

mov         dword [eax+0x04],0

mov         dword [eax+0x08],0

mov         dword [eax+0x0C],0

mov         dword [eax+0x10],0

mov         dword [eax+0x14],0

mov         dword [eax+0x18],0

 

;set Context.EIP upon return

add          dword [eax+0xb8],6

xor           eax,eax

retn

对于软件断点,壳能够直接搜索INT3(0xCC)并用任意/随机的操做码加以替换。这样作之后,软件断点失效而且原始的指令将会被破坏。

对策

显然当硬件断点被检测之后能够用软件断点来代替,反之亦然。若是二者都被检测,能够试试OllyDbg的内存访问/写入断点功能。

5.5 Unhandled Exception Filter

MSDN文档声明当一个异常到达Unhandled Exception Filter(kernel32!UnhandledExceptionFilter)而且程序没有被调试时,Unhandled Exception Filter将会调用在kernel32!SetUnhandledExceptionFilter()API做为参数指定的高层exception Filter。壳利用了这一点,经过设置exception Filter而后抛出异常,若是程序被调试那么这个异常将会被调试器接收,不然,控制被移交到exception Filter运行得以继续。

示例

下面的示例中经过SetUnhandledExceptionFilter()设置了一个高层的exception Filter,而后抛出一个违规访问异常。若是进程被调试,调试器将收到两次异常通知,不然exception Filter将修改CONTEXT.EIP并继续执行。

;set the exception filter

push                .exception_filter

call                 [SetUnhandledExceptionFilter]

mov                 [.original_filter],eax

 

;throw an exception

xor                  eax,eax

mov                 dword [eax],0

 

;restore exception filter

push                dword [.original_filter]

call                 [SetUnhandledExceptionFilter]

 

:::

 

.exception_filter:

;EAX = ExceptionInfo.ContextRecord

mov               eax,[esp+4]

mov               eax,[eax+4]

 

;set return EIP upon return

add                dword [eax+0xb8],6

 

;return EXCEPTION_CONTINUE_EXECUTION

mov               eax,0xffffffff

retn

有些壳并不调用SetUnhandledExceptionFilter()而是直接经过kernel32!_BasepCurrentTopLevelFilter手工设置exception Filter,以防逆向分析人员在那个API上下断。

对策

有意思的是kernel32!UnhandledExceptionFilter()内部实现代码是使用ntdll!NtQueryInformationProcess(ProcessDebugPort)来肯定进程是否被调试,从而决定是否调用已注册的exception Filter。所以,处理方法和DebugPort调试器检测技术相同。

5.6 OllyDbg:OutputDebugString() Format String Bug

这个调试器攻击手段只对OllyDbg有效。已知OllyDbg面对能致使崩溃或执行任意代码的格式化字符串漏洞是脆弱的,这个漏洞是因为向kernel32!OutputDebugString()传递了不当的字符串参数引发的。这个漏洞在当前OllyDbg(1.10)依然存在而且仍然没有打补丁。

示例

下面这个简单的示例将致使OllyDbg抛出违规访问异常或不可预期的终止。

push         .szFormatString

call                 [OutputDebugStringA]

:::

.szFormatString db "%s%s",0

对策

能够经过补丁 kernel32!OutputDebugStringA()入口使之直接返回来加以解决。

6. 高级及其它技术                                                       

本节罗列了不属于前面任一分类的一些高级和其它的反逆向技术。

6.1 Process Injection

进程注入已经成为某些壳的一个特色。脱壳代码打开一个选定的宿主进程(自身、explorer.exe、iexplorer.exe等)而后将脱壳后的程序注入到这个宿主进程。

 

下面是一个支持进程注入的壳的屏幕截图。

 

恶意代码利用壳的这个特色使它们能躲过一些防火墙,这些防火墙经过检查进程是否在获准进行外部网络链接的应用程序列表中而决定是否放行。

壳所采用的执行进程注入的一种方法以下:

1. 向kernel32!CreateProcess()传递CREATE_SUSPENDED进程建立标志,将宿主进程做为一个挂起的子进程打开。这时一个初始化了的线程被建立并挂起,因为loader例程(ntdll!LrdInitializeThunk)尚未被调用,DLL尚未被载入。这个线程的上下文中包含PEB地址、宿主进程入口点信息的寄存器值被设置。

2. 使用kernel32!GetThreadContext()获取子进程初始化线程的上下文。

3. 经过CONTEXT.EBX获取子进程的PEB地址。

4. 读PEB.ImageBase(PEB+0x8)获取子进程的映像基址。

5. 将BaseAddress参数指向检索到的映像基址,调用ntdll!NtUnmapViewOfSection()来unmap子进程中的原始宿主映像。

6. 脱壳代码使用kernel32!VirtualAllocEx()在子进程中分配一段内存,dwSize参数等于脱壳后程序的映像大小。

7. 使用kernel32!WriteProcessMemory()将脱壳后的程序的PE头和每一个节写入子进程。

8. 将子进程的PEB.ImageBase更新以匹配脱壳后的程序映像基址。

9. 经过kernel32!SetThreadContext()更新子进程初始化线程的上下文,将其中的CONTEXT.EAX设置为脱壳后程序的入口点。

10. 经过kernel32!ResumeThread()恢复子进程的执行。

为了从入口点开始调试打开的子进程,逆向分析人员能够在WriteProcessMemory()中设置断点,当包含入口点的节被写入子进程的时候,将入口点代码补丁为”跳往自身”指令(0xEB0xFE)。当子进程的主线程被恢复,子进程将在入口点进入一个死循环。这时逆向分析人员就能够附加一个调试器到子进程,恢复被修改的指令,继续正常的调试。

6.2 Debugger Blocker

Armadillo壳引入了称之为Debugger Blocker的功能,它能够阻止逆向分析人员将调试器附加到一个受保护的进程。这个保护是经过调用Windows提供的调试函数来实现的。

具体来讲就是脱壳代码扮演一个调试器的角色(父进程),经过它打开、调试/控制包含脱壳后程序的子进程。

 

因为受保护的进程已经被调试,经过kernel32!DebugActiveProcess()来附加调试器将会失败,缘由是相应的native API ntdll!NtDebugActiveProcess()将返回STATUS_PORT_ALREADY_SET。 NtDebugActiveProcess()的失败的根本缘由在于内核结构EPROCESS的DebugPort成员已经被设置过了。

为了附加调试器到受保护的进程,好几个逆向论坛发布的解决方法是在父进程的上下文里调用dernel32!DebugActiveProcessStop()。能够经过附加调试器到父进程,在kernel32!WaitForDebugEvent()内部下断,断下来后,注入一段调用DebugActiveProcessStop(childProcessID)的代码并执行,一旦调用成功,这时就能够附加调试器到受保护的进程了。

6.3 TLS Callbacks

另外一个被壳使用的技术就是在实际的入口点代码执行以前执行代码,这是经过使用Thread Local Storage (TLS)回调函数来实现的。壳经过这些回调函数执行调试器检测及解密例程,这样逆向分析人员将没法跟踪这些例程。

TLS回调可使用诸如pedump之类的PE文件分析工具来识别。若是可执行文件中存在TLS条目,数据条目将会显示出来。

Data directory

EXPORT                       rva:00000000 size:00000000

IMPORT                        rva:00061000 size:000000E0

:::

TLS                              rva:000610E0 size:00000018

:::

IAT                               rva:00000000 size:00000000

DELAY_IMPORT          rva:00000000 size:00000000

COM_DESCRPTR         rva:00000000 size:00000000

unused                           rva:00000000 size:00000000

接着显示TLS条目的实际内容。AddressOfCallBacks成员指向一个以null结尾的回调函数数组。

TLS directory:

StartAddressOfRawData:               00000000

EndAddressOfRawData:                00000000

AddressOfIndex:                          004610F8

AddressOfCallBacks:                  004610FC

SizeOfZeroFill:                            00000000

Characteristics:                             00000000

在这个例子中,RVA 0x4610fc指向回调函数指针(0x490f43和0x44654e):

 

默认状况下OllyDbg载入这个例子将会暂停在入口点。因为TLS回调函数是在实际的入口点执行以前被调用的,OllyDbg应该配置一下使其在TLS回调被调用以前中断在实际的loader。

能够经过选择选项->调试选项->事件->第一次中断于->系统断点来设置中断于ntdll.dll内的实际loader代码。

 

这样设置之后,OllyDbg将会中断在位于执行TLS回调的ntdll!LdrpRunInitializeRoutines()以前的ntdll!_LdrpInitializeProcess(),这时就能够在回调例程中下断并跟踪了。

关于PE文件格式的更多信息及包括pedump的二进制/源码能够在以下的连接得到:

An In-Depth Look into the Win32 Portable Executable File Format by Matt Pietrek

http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx

An In-Depth Look into the Win32 Portable Executable File Format,Part 2 by Matt Pietrek

http://msdn.microsoft.com/msdnmag/issues/02/03/PE2/

最新版本的微软PE文件格式能够经过以下连接得到:

Microsoft Portable Executable and Common Object File Format Specification

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

6.4 Stolen Bytes

代码抽取基本上就是壳移走受保护程序的一部分(一般是入口点的少许指令),这部分指令被复制并在分配的内存中执行。这在某种程度上保护了程序,由于若是从内存中dump受保护进程,被抽取的指令将不会被恢复。

这是一个可执行文件的原始入口点代码:

004011CB        MOV EAX,DWORD PTR FS:[0]

004011D1        PUSH EBP

004011D2        MOV EBP,ESP

004011D4        PUSH -1

004011D6        PUSH 0047401C

004011DB        PUSH 0040109A

004011E0        PUSH EAX

004011E1        MOV DWORD PTR FS:[0],ESP

004011E8        SUB ESP,10

004011EB        PUSH EBX

004011EC        PUSH ESI

004011ED        PUSH EDI

下面是被Enigma加密壳偷取了前两个指令的同一段代码:

004011CB        POP EBX

004011CC        CMP EBX,EBX

004011CE        DEC ESP

004011CF        POP ES

004011D0        JECXZ SHORT 00401169

004011D2        MOV EBP,ESP

004011D4        PUSH -1

004011D6        PUSH 0047401C

004011DB        PUSH 0040109A

004011E0        PUSH EAX

004011E1        MOV DWORD PTR FS:[0],ESP

004011E8        SUB ESP,10

004011EB        PUSH EBX

004011EC        PUSH ESI

004011ED        PUSH EDI

这是被ASProtect壳偷取了数条指令的相同例子。它增长了一条jump指令,指向内存中一段执行被偷代码的过程,被偷的指令和垃圾代码搀杂在一块儿,想要恢复被偷的代码困难重重。

004011CB        JMP 00B70361

004011D0        JNO SHORT 00401198

004011D3        INC EBX

004011D4        ADC AL,0B3

004011D6        JL SHORT 00401196

004011D8        INT1

004011D9        LAHF

004011DA        PUSHFD

004011DB        MOV EBX,1D0F0294

004011E0        PUSH ES

004011E1        MOV EBX,A732F973

004011E6        ADC BYTE PTR DS:[EDX-E],CH

004011E9        MOV ECX,EBP

004011EB        DAS

004011EC        DAA

004011ED        AND DWORD PTR DS:[EBX+58BA76D7],ECX

6.5 API Redirection

API重定向是用来防止逆向分析人员轻易重建受保护程序输入表的一种方法。原始的输入表被销毁,对API的调用被重定向到位于内存中的例程,而后由这些例程负责调用实际的API。

在这个例子中代码调用了kernel32!CopyFileA() API:

00404F05        LEA EDI,DWORD PTR SS:[EBP-20C]

00404FOB        PUSH EDI

00404FOC        PUSH DWORD PTR SS:[EBP-210]

00404F12        CALL <JMP.&KERNEL32.CopyFileA>

被调用的代码是一个JMP指令,跳转到输入表中的函数地址。

004056B8        JMP DWORD PTR DS:[<&KERNEL32.CopyFileA>]

然而当ASProtect壳重定向KERNEL32!CopyFileA() API时,这段代码被修改成一个call指令,调用壳本身分配的内存中的过程。

004056B8        CALL 00D90000

下图说明了被偷的指令是如何被安置的。前7条KERNEL32!CopyFileA()代码中的指令被复制过来,另外0x7C83005E Call指令指向的代码也被复制过来。经过一个RETN指令,将控制移交回kernel32.dll领空KERNEL32!CopyFileA()中间的0x7C830063地址处:

 

有些壳则更进一步将整个DLL映像载入到一段分配的内存中,而后重定向API调用到这些DLL映像的拷贝。 这个技术使得在实际的API中下断点变难了。

6.6 Multi-Threaded Packers

对于多线程壳,另外一个线程经常用于执行一些诸如解密受保护程序这样必需的操做。多线程壳复杂度增长了,因为跟踪代码变得复杂,理解代码的难度也大大增长了。

PECrypt是一款多线程壳壳,它用第2个线程来解密数据,而后这些数据被主线程使用,这些线程之间经过事件对象进行同步。

PECrypt壳操做并同步线程:

 

6.7 Virtual Machines

使用虚拟机的概念很简单:逆向分析人员最终会想出如何躲过/解决反调试和反逆向技术,当受保护的程序最终须要在内存中解密并执行时,面对静态分析就显得脆弱不堪了。

随着虚拟机的出现,受保护部分的代码被转换成了p-code,p-code在执行时能够转换成机器码。原始的机器指令被替换,理解代码所做所为的复杂度成指数上升。

下面是这个概念的简单图示:

 

像Oreans technologies的CodeVirtualizer和StraForce这些最新的壳都应用了虚拟机的概念来保护程序。

对付虚拟机须要分析p-code是若是组织并被虚拟机转换的,尽管这一切并不简单。得到足够的信息以后,就能够开发一款反编译引擎来分析P-code并将它们转换成机器码或者是可理解的指令。

一个开发p-code反编译引擎的例子和虚拟机实现的详细信息能够经过以下连接得到:

Defeating HyperUnpackMe2 With an IDA Processor Module, Rolf Rolles III

http://www.openrce.org/articles/full_view/28

7. 工具                                                                       

本节列举了逆向分析人员和恶意代码分析人员能够用来分析、脱壳的公开可用的工具。

免责声明:这些都是第三方工具,笔者对这些工具可能致使的系统不稳定和可能影响系统的其余问题不负任何责任。建议老是在测试或恶意代码分析环境中运行这些工具。

7.1 OllyDbg

http://www.ollydbg.de/

逆向分析人员和恶意代码分析人员使用的一款强大Ring3调试器。它的插件功能容许其余的逆向分析人员建立更多的插件,使得逆向和脱壳变得愈来愈简单。

 

7.2 Ollyscript

http://www.openrce.org/downloads/details/106/OllyScript

一个OllyDbg的插件,容许经过使用相似于汇编语言的脚本实现自动设置/处理断点、补丁代码/数据等。在执行重复性的工做或者是自动脱壳是尤为有用。

 

7.3 Olly Advanced

http://www.openrce.org/downloads/details/241/Olly_Advanced

针对逆向分析人员若是说壳有盔甲的话,那么这个OllyDbg的插件就是逆向分析人员调试器的盔甲。它有不少选项用来躲过反调试技术,隐藏OllyDbg使其不被壳检测到。

 

7.4 OllyDump

http://www.openrce.org/downloads/details/108/OllyDump

成功脱壳后,这个OllyDbg插件能够用来dump进程而且重建输入表。

 

7.5 ImpRec

http://www.woodmann.com/crackz/Unpackers/Imprec16.zip

最后,这是另外一款dump进程和重建输入表的工具。它是一款独立的工具,它提供了最出色的输入表重建能力。

 

8 参考                                                                           

书籍:逆向工程,软件保护

Reversing: Secrets of Reverse Engineering.  E.Eilam.Wiley, 2005

Crackproof Your Software , P.Cerven.No Starch Press, 2002

书籍:Windows和处理器底层

Microsoft Windows Internal, 4th Edition . M. Russinovich, D. Solomon, Microsoft Press,

IA-32 Intel Architecture Software Developer’s Manual. Volume 1-3, Intel Corporation, 2006

连接:Windows底层

ReactOS Project

http://www.reactos.org/en/index.html

Source Search: http://www.reactos.org/generated/doxygen/

Wine Project

http://www.winehq.org/

Source Search: http://source.winehq.org/source/

The Undocumented Functions

http://undocumented.ntinternals.net

MSDN

http://msdn2.microsoft.com/en-us/default.aspx

连接:逆向工程,软件保护,脱壳

OpenRCE

http://www.openrce.org

OpenRCE Anti Reverse Engineering Techniques Database

http://www.openrce.org/reference_library/anti_reversing

RCE Forums

http://www.woodmann.com/forum/index.php

EXETOOLS Forums

http://forum.exetools.com

相关文章
相关标签/搜索